Подключение светодиодов через стабилизатор тока. Простые линейные стабилизаторы тока для светодиодов своими руками Импульсный стабилизатор тока для светодиодов своими руками

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, ). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно .

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и R set .

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора R sens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, ). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема .

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.

После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.

В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.

Зачем нужны преобразователи

Все дело в том, что прямое падение напряжения на , как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой .

Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать : многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.

Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.

В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной . Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.

Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.

Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.

Если под рукой не окажется транзистора структуры n-p-n, то можно применить , например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.

Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.

Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.

Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.

Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521 ().

Преобразователи с дросселем

Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1 , содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.

При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.

Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.

При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.

Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.

Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.

Схемы с обратной связью по току

А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.

В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.

При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.

Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.

Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.

При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.

Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.

Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.

Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.

Интегральные стабилизаторы тока

В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.

На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.

Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.

Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.

Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.

В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.

При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.

Борис Аладышкин

За последние 10-20 лет количество бытовой электроники многократно выросло. Появилось огромное разнообразие электронных компонентов и готовых модулей. Возросли и требования к питанию, для многих требуется стабилизированное напряжение или стабильный ток.

Драйвер чаще всего используется как стабилизатор тока для светодиодов и зарядки автомобильных аккумуляторов. Такой источник теперь есть в каждой светодиодном прожекторе, лампе или светильнике. Рассмотрим все варианты стабилизации, начиная от старых и простых до самых эффективных и современных. Еще они называются , led driver.


  • 1. Типы стабилизаторов
  • 2. Популярные модели
  • 3. Стабилизатор для светодиодов
  • 4. Драйвер на 220 В
  • 5. Стабилизатор тока, схема
  • 6. LM317
  • 7. Регулируемый стабилизатор тока
  • 8. Цены в Китае

Типы стабилизаторов

Импульсные регулируемые постоянного тока

15 лет назад на первом курсе я сдавал зачёты по предмету «Источники питания» для радиоэлектронной аппаратуры. Начиная с тех пор и до сегодняшнего времени, самым народным и популярным остаётся микросхема LM317 и её аналоги, которая относится к классу линейных стабилизаторов.

На данный момент есть несколько видов стабилизаторов напряжения и тока:

  1. линейные до 10А и входным напряжением до 40В;
  2. импульсные с высоким входным напряжением, понижающие;
  3. импульсные с низким входным напряжением, повышающие.

На импульсном ШИМ контроллере обычно от 3 до 7 ампер по характеристикам. В реальности зависит от системы охлаждения и КПД в конкретном режиме. Повышающий из низкого входного напряжения на выходе делает более высокое. Такой вариант используется для от блоков питания с малым количеством вольт. Например в автомобиле, когда из 12В надо сделать 19В или 45В. С понижающим проще, высокое снижается до нужного уровня.

Про все способы питания светодиодов читайте в статье « к 12 и 220В». Отдельно описаны схемы подключения от простейших за 20 руб до полноценных блоков с хорошим функционалом.

По функционалу они делятся на специализированные и универсальные. Универсальные модули обычно имеют 2 переменных сопротивления, для настройки Вольт и Ампер на выходе. Специализированные чаще всего не имеют построечных элементов и значения на выходе фиксированы. Среди специализированных, распространены стабилизаторы тока для светодиодов, схемы в большом количестве есть в интернете.

Популярные модели

Lm2596

Среди импульсных стала популярна LM2596, но по современным меркам у неё низкий КПД. Если более 1 ампера, то требуется радиатор. Небольшой список аналогичных:

  1. LM317
  2. LM2576
  3. LM2577
  4. LM2596
  5. MC34063

Дополню современным китайским ассортиментом, который хороший по характеристикам, но встречается гораздо реже. На Алиэкспресс помогает поиск именно по маркировке. Список собран по интернет-магазинам:

  • MP2307DN
  • XL4015
  • MP1584EN
  • XL6009
  • XL6019
  • XL4016
  • XL4005
  • L7986A

Так же подходят для китайских дневных ходовых огней ДХО. Из-за дешевизны светодиоды подключены через резистор к авто аккумулятору или автомобильной сети. Но напряжения скачет до 30 вольт импульсами. Низкокачественные светодиоды не выдерживают таких скачков и начинают дохнуть. Скорее всего вы видали мигающие ДХО или ходовые огни, у которых некоторые светодиоды не работают.

Сборка схемы своими руками на этих элементах будет простой. Преимущественно это стабилизаторы напряжения, которые включаются в режиме стабилизации тока.

Не путайте максимальное напряжение всего блока и максимальное напряжение ШИМ контроллера. На блоке могут быть установлены низковольтные конденсаторы на 20В, когда импульсная микросхема имеет вход до 35В.

Стабилизатор для светодиодов

Сделать стабилизатор тока для светодиодов своими руками проще всего на LM317, требуется только рассчитать резистор для светодиода на онлайн калькуляторе. Питание можно использовать подручное, например:

  1. блок питания от ноутбука на 19V;
  2. от принтера на 24В и 32В;
  3. от бытовой электроники на 12 вольт, 9V.

Преимущества такого преобразователя, это низкая цена, легко купить, минимум деталей, высокая надежность. Если схема стабилизатора тока сложнее, то собирать её своими руками становится не рационально. Если вы не радиолюбитель, то импульсный стабилизатор тока проще и быстрее купить. В дальнейшем его можно доработать до необходимых параметров. Подробнее вы можете узнать в разделе «Готовые модули».

Драйвер на 220 В

..

Если вас интересует драйвер для светодиода на 220в, то лучше его заказать или купить. Они имеют среднюю сложность изготовления, но настройка отнимет больше времени и потребуется опыт по наладке.

Светодиодный драйвер на 220 можно извлечь из неисправных светодиодных ламп, светильников и прожекторов, у которых неисправна цепь со светодиодами. К тому же практически любой имеющийся драйвер можно доработать. Для этого узнайте модель ШИМ контроллера, на котором собран преобразователь. Обычно параметры на выходе задаются резистором или несколькими. По даташиту (datasheet) посмотрите, какое сопротивление должно быть, чтобы получить нужные Амперы.

Если поставить регулируемый резистор рассчитанного номинала, то количество Ампер на выходе будет настраиваемым. Только не превышайте номинальную мощность, которая была указана.

Стабилизатор тока, схема

Мне приходится часто просматривать ассортимент на Aliexpress в поисках недорогих но качественных модулей. Разница по стоимости может быть в 2-3 раза, время уходит на поиск минимальной цены. Но благодаря этому делаю заказ на 2-3 штуки для тестов. Покупаю для обзоров и консультаций производителей, которые покупают комплектующие в Китае.

В июне 2016 года оптимальным выбором стал универсальный модуль на XL4015, цена которого 110руб с бесплатной доставкой. Его характеристики подходят для подключения мощных светодиодов до 100 Ватт.

Схема в режиме драйвера.

В стандартном варианте корпус XL4015 припаян к плате, которая служит радиатором. Для улучшения охлаждения на корпус XL4015 надо поставить радиатор. Большинство ставят его сверху, но эффективность такой установки низкая. Лучше систему охлаждения ставить снизу платы, напротив места пайки микросхемы. В идеале её лучше отпаять и поставить на полноценный радиатор через термопасту. Ножки скорее всего придется удлинить проводами. Если потребуется такое серьезное охлаждение контроллеру, то оно потребуется и диоду Шотки. Его тоже придётся поставить на радиатор. Такая доработка значительно повысит надежность всей схемы.

В основном модули не имеют защиты от неправильной подачи питания. Это моментально выводит их из строя, будьте внимательны.

LM317

Применение (крен) даже не требует каких либо навыков и знаний по электронике. Количество внешних элементов в схемах минимально, поэтому это доступный вариант для любого. Её цена очень низкая, возможности и применение многократно испытаны и проверены. Только она требует хорошего охлаждения, это её основной недостаток. Единственное стоит опасаться низкокачественных китайских микросхем ЛМ317, которые имеют параметры похуже.

Микросхемы линейной стабилизации из-за отсутствия лишних шумов на выходе, использовал для питания высококачественных ЦАП класса Hi-Fi и Hi-End. Для ЦАП огромную роль играет чистота питания, поэтому некоторые используют аккумуляторы для этого.

Максимальная сила для LM317 составляет 1,5 Ампера. Для увеличения количества ампер можно добавить в схему полевой транзистор или обычный. На выходе можно будет получить до 10А, задаётся низкоомным сопротивлением. На данной схеме основную нагрузку на себя берёт транзистор КТ825.

Другой способ, это поставить аналог с более высокими техническими характеристиками на большую систему охлаждения.

Регулируемый стабилизатор тока

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас из готовых блоков можно собрать любое устройство за минимальное время.

Я начал терять доверие к китайской продукции, после того, как у видел в «Танковом биатлоне», как у лучшего китайского танка отпало колесо.

Лидером по ассортименту блоков питания, преобразователей тока DC-DC, драйверов стали китайские интернет-магазины. У них в свободной продаже можно найти практически любые модули, если поискать получше, то и очень узкоспециализированные. Например за 10.000 т.руб можно собрать спектрометр стоимостью 100.000 руб. Где 90% цены это накрутка за бренд и немного доработанный китайский софт.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Цены в Китае

Стоимость очень низкая, с учетом того, что доставка включена в цену. Раньше я думал, что из-за товара за 30-50 руб китайцы даже и мараться не будут, много работы при малом доходе. Но как показала практика, я ошибался. Любую копеечную ерунду они упаковывают и отсылают. Приходит в 98% случаев, а закупаю на Aliexpress уже более 7 лет и на большие суммы, наверное уже около 1 млн руб.

Поэтому оформляю заказ заранее, обычно 2-3 штуки одного наименования. Ненужное распродаю на местном форуме или Авито, всё расходится как горячие пирожки.

Светодиоды не любят колебания напряжения, это факт. Не любят они это по причине того, что светодиоды ведут себя не так как лампы или другие линейные приборы. Их ток меняется в зависимости от напряжения нелинейно, поэтому например двухкратное увеличение напряжения увеличивает ток через светодиоды далеко не в 2 раза. Из за чего они перегреваются, быстро деградируют и выходят из строя.

Большинство диодов, применяемых в автомобиле, имеют встроенное сопротивление, которое рассчитано на напряжение 12 вольт. Но напряжение бортовой сети автомобиля никогда не бывает 12 вольт (разве что с разряженным аккумулятором), плюс ко всему оно далеко не такое стабильное, как хотелось бы. Если использовать недорогие китайские диодные приборы в автомобиле без предварительной их стабилизации то они достаточно быстро начнут мигать а затем и вовсе перестанут светить.

Вот и я столкнулся с такой проблемой - светодиоды в габаритах начали мигать, так как я когда-то поленился их стабилизировать.

Существует множество готовых схем-стабилизаторов для 12-вольтовых приборов. Чаще всего на прилавках можно найти микросхему КР142ЕН8Б или подобные ей. Данная микросхема расчитана на ток до 1.5А, но для большего эффекта нужно включение с применением входных и выходных конденсаторов.

Стандартная схема предполагает применение 0.33 и 0.033мкФ конденсаторов (если память не изменяет). Но лично я решил сделать включение с применением 4-х конденсаторов: 470мкФ и 0.47мкФ на вход и соответственно в 10 раз меньшая емкость на выход. Я уже не помню, но где-то на форумах я встречал именно такое включение, решил его применить.

Чтобы все это можно было легко внедрить в авто, я решил напаять все элементы непосредственно на микросхему.

Микросхема с элементами

Микросхема с элементами

К микросхеме припаяны, помимо конденсаторов, два провода, соответственно вход и выход. Масса будет приходить через крепление микросхемы. Средняя нога микросхемы задействована только под ножки конденсаторов. Выводить провод от нее я не стал, так как она объединена с корпусом схемы.
Для прочности всей конструкции я решил залить все это клеем, затем завернуть в термоусадку.

Микросхемы

Микросхема и термоусадка

Готовые стабилизаторы

В автомобиле можно крепить через саморез к кузову.

Прикрепленный стабилизатор

Пост не претендует на что-то супер-мега технологичное, но мало ли кому может пригодиться 🙂

Схема включения

Вместо КР142ЕН8Б можно использовать L7812CV, схема включения аналогичная. Если взглянуть на стандартную схему и сравнить с моей то возникают вопросы “зачем именно такие емкости?”.

Поясняю: штатная схема включения подразумевает только стабилизацию напряжения, но никак не спасает от просадки (кратковременной) напряжения, поэтому в схему были введены электролиты достаточно большой емкости для сглаживания таких просадок.

По идее конечно АКБ в машине должен выполнить роль фильтра просадок напряжения, но иногда случаются просадки, которые АКБ просто не успевает уловить. Например при подаче искры на свечу зажигания через катушку проходит нехилый ток, который отлично просаживает напряжение в бортсети.

Все знают, что для питания светодиодов требуется стабильный ток, иначе их кристалл не выдерживает и быстро разрушается. Для этого применяют токовую стабилизацию - специальные схемы драйверов или просто резисторы. Последний метод используется чаще всего, особенно в светодиодных лентах, где на каждые 3 LED элемента ставят по одному сопротивлению. Но резисторы, справляются со своим делом стабилизации не слишком эффективно, так как во-первых греются (лишний расход энергии), а во-вторых поддерживают заданный ток в узком диапазоне напряжений - согласно закона Ома.

Представляем радиоэлемент нового поколения - компактный регулятор тока для светодиодов от OnSemi NSI45020AT1G. Его важное преимущество - он двухвыводной и миниатюрный, создан специально для управления маломощными светодиодами. Устройство выполнено в SMD корпусе SOD-123 и обеспечивает стабильный ток 20 мА в цепи, не требуя дополнительных внешних компонентов. Такое простое и надежное устройство позволяет создавать недорогие решения для управления светодиодами. Внутри него находится схема из полевого транзистора и нескольких деталей обвязки, естественно с сопутствующими радиоэлементами защиты. Что-то типа такого LED драйвера.

Регулятор включается последовательно в цепь светодиодов, работает с максимальным рабочим напряжением 45 В, обеспечивает ток в цепи 20 мА с точностью ±10%, имеет встроенную ESD защиту, защиту от переполюсовки. При повышении температуры регулятора, выходной ток будет снижаться. Падение напряжения 0,5 В, а напряжение включения - 7,5 В.

Схемы включения стабилизатора тока LED

Для обеспечения тока в цепи больше 20 мА нужно включить параллельно несколько регуляторов (2 регулятора - ток 40 мА, 3 регулятора - ток 60 мА, 5 регуляторов - 100 мА).

Основные характеристики регулятора NSI45020

  • Регулируемый ток 20±10% мА;
  • Максимальное напряжение анод-катод 45 В;
  • Рабочий температурный диапазон -55…+150°С;
  • Корпус SOD-123 выполненный с использованием без свинцовых технологий.

Сферы применения стабилизатора NSI45020AT1G: световые панели, декоративная подсветка, подсветка дисплеев. В автомобилях регулятор тока ставят на подсветку зеркал, приборной панели, кнопок. Также его используют в светодиодных лентах вместо обычных резисторов, что позволяет подключать LED ленты к источникам разного напряжения без потери яркости. Напряжение питания у NSI45020 до 45 В, на выходе стабильные 20 мА. Включается последовательно с цепочкой светодиодов, единственное условие: сумма падений напряжения на светодиодах должна быть меньше входного напряжения минимум на 0,7 В. В общем деталь полезная, и если бы ещё цена на них была низкая - можно смело закупать партию и ставить вместо резисторов, на все светодиоды в приборах и конструкциях.



Читайте также: