Простые стабилизаторы напряжения и их расчёт. Параметрические стабилизаторы напряжения Расчет балластного сопротивления стабилитрона

В маломощных схемах на нагрузку до 20 миллиампер применяется устройство с малым коэффициентом действия, и называется параметрическим стабилизатором. В устройстве таких приборов имеются транзисторы, стабилитроны и стабисторы. Они применяются в основном в компенсационных устройствах стабилизации в качестве опорных источников питания. Параметрические стабилизаторы в зависимости от технических данных могут быть 1-каскадными, мостовыми и многокаскадными.

Стабилитрон в устройстве прибора подобен подключенному диоду. Но обратный пробой напряжения больше подходит для стабилитрона и является базой его нормальной работы. Эта характеристика нашла популярность для разных схем, где необходимо создавать ограничение сигнала входа по напряжению.

Такие стабилизаторы являются быстродействующими приборами, и защищают участки с повышенной чувствительностью от импульсных помех. Применение таких элементов в новых схемах является показателем их повышенного качества, которое обеспечивает постоянное функционирование в разных режимах.

Схема стабилизатора

Базой этого прибора является схема подключения стабилитрона, применяющаяся и в других видах приборов вместо источника питания.

Схема включает в себя делитель напряжения из балластного сопротивления и стабилитрона, к которому параллельно подключена нагрузка. Устройство выравнивает напряжение на выходе при переменном питании и нагрузочном токе.

Действие схемы происходит следующим образом. Напряжение, повышающееся на входе прибора, вызывает повышение тока, который проходит через сопротивление R1 и стабилитрон VD. На стабилитроне напряжение остается постоянным из-за его вольтамперной характеристики. Поэтому не меняется и напряжение на нагрузке. В итоге все преобразованное напряжение будет приходить на сопротивление R1. Такой принцип действия схемы позволяет сделать расчет всех параметров.

Принцип действия стабилитрона

Если стабилитрон сравнивать с диодом, то при подключении диода в прямом направлении по нему может проходить обратный ток, который имеет незначительную величину в несколько микроампер. При повышении обратного напряжения до некоторой величины возникнет пробой электрический, а если ток очень велик, то произойдет и тепловой пробой, поэтому диод выйдет из строя. Конечно, диод может работать при электрическом пробое при снижении тока, проходящего через диод.

Стабилитрон спроектирован так, что его характеристика на участке пробоя имеет повышенную линейность, а разность потенциалов пробоя достаточно стабильна. Стабилизация напряжения с помощью стабилитрона выполняется при его функционировании на обратной ветви свойства тока и напряжения, а на прямой ветке графика стабилитрон работает как обычный диод. На схеме стабилитрон обозначается:

Параметры стабилитрона

Его главные параметры можно увидеть по характеристике напряжения и тока.

  • Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
  • Наибольший допустимый ток стабилизации . Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
  • Наименьший ток стабилизации , рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
  • Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.

Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.

Расчет параметрического стабилизатора

Добротность функционирования прибора вычисляется по коэффициенту стабилизации, который вычисляется по формуле: Кст U = (ΔUвх / Uвх) / (ΔU вых / Uвых).

Далее расчет стабилизатора с применением стабилитрона производится в сочетании с балластным резистором в соответствии с типом применяемого стабилитрона. Для расчета используются рассмотренные ранее параметры стабилитрона.

Определим порядок расчета на примере. Возьмем исходные данные:

  • U вых=9 В;
  • I н =10мА;
  • ΔI н = ±2мА;
  • ΔU вх = ± 10% Uвх

По справочнику подбираем стабилитрон Д 814Б, свойства которого:

  • U ст = 9 В;
  • I ст. макс = 36 мА;
  • I ст. мин = 3 мА;
  • R д = 10 Ом.

Далее вычисляется входное напряжение: Uвх = nст *Uвых, где nст – коэффициент передачи. Функционирование стабилизатора станет эффективнее, если этот коэффициент будет в пределах 1,4-2. Если nст =1,6, то U вх= 1,6 * 9 = 14,4 В.

На следующем шаге производится расчет балластного резистора. Используется формула: R о = (U вх – U вых) / (I ст + I н). Величина тока I ст выбирается: I ст ≥ I н. При изменении U вх на величину Δ Uвх и Iн на ΔIн, не может быть больше тока стабилитрона величин I ст. макс и I ст. мин. Поэтому, I ст берется в качестве среднего допустимой величины в этом интервале и равно 0,015 ампер.

Значит, балластный резистор равен: R о = (14,4 – 9)/(0,015+0,01)= 16 Ом. Ближнее стандартное значение составляет 220 Ом. Для выбора типа сопротивления, выполняется расчет рассеиваемой мощности на корпусе. Применяя формулу Р = I*2 R о, определяем величину Р = (25*10-3) * 2 * 220 = 0,138 ватт. Другими словами, стандартная мощность сопротивления равна 0,25 ватт.

Поэтому лучше подойдет сопротивление МЛТ — 0,25 — 220 Ом. После осуществления расчетов необходимо проверить правильность выбора режима действия стабилитрона в схеме параметрического прибора. В первую очередь определяется его наименьший ток: Iст. Мин = (U вх – ΔU вх – U вых) / Rо – (I н + ΔI н), с практическими параметрами определяется величина I ст.мин = (14,4–1,44–9) * 103 / 220–(10+2) = 6 миллиампер.

Такая же процедура производится для вычисления наибольшего тока: I ст. макс=(Uвх+ΔUвх–Uвых)/Rо–(Iн–ΔIн). По исходным параметрам, наибольший ток составит: Iст.макс=(14,4 + 1,44 – 9) * 103 / 220–(10 – 2)=23 миллиампер. Если в результате вычисленные значения наименьшего и наибольшего тока превосходят допустимые границы, то необходимо заменить I ст или резистор R о. Иногда требуется замена стабилитрона.

До недавнего времени для питания маломощных каскадов радиоэлектронной аппаратуры использовались параметрические стабилизаторы напряжения. Сейчас намного дешевле и эффективней применить малошумящие компенсационные стабилизаторы, подобные ADP3330 или ADM7154. Тем не менее в ряде уже производящейся аппаратуры уже применены параметрические стабилизаторы, поэтому необходимо уметь их расчитывать. Наиболее распространенная схема параметрического стабилизатора приведена на рисунке 1.


Рисунок 1. Схема параметрического стабилизатора

На данном рисунке приведена схема стабилизатора положительного напряжения. Если требуется стабилизировать отрицательное напряжение, то стабилитрон ставится в противоположном направлении. Напряжение стабилизации полностью определяется типом стабилитрона.

Расчет стабилизатора таким образом сводится к расчету резистора R 0 . Прежде чем начинать его расчет следует определиться с основным дестабилизирующим фактором:

  • входное напряжение;
  • ток потребления.

Нестабильное входное напряжение при стабильном токе потребления присутствует обычно в источниках опорного напряжения для аналого-цифровых и цифро-аналоговых преобразователей. Для параметрического стабилизатора, питающего определенный узел аппаратуры, приходится учитывать изменение выходного тока. В приведенной на рисунке 1 схеме при постоянном входном напряжении ток I всегда будет стабильным. Если нагрузка будет потреблять меньше тока, то его излишки уйдут в стабилитрон.

I = I ст + I н (1)

Поэтому максимальный ток нагрузки не может превышать максимальный ток стабилитрона. Если входное напряжение не будет постоянным (а эта ситуация очень распространена), то допустимый диапазон изменения тока нагрузки дополнительно уменьшается. Сопротивление резистора R 0 расчитывается по закону Ома. При расчете используется минимальное значение входного напряжения.

(2)

Максимальный диапазон изменения входного напряжения можно определить по закону Киргофа. После небольших преобразований его можно свести к следующей формуле:


(3)

Таким образом расчет параметрического стабилизатора достаточно прост. Именно это и составляет его привлекательность. Однако при выборе типа стабилизатора следует иметь в виду то обстоятельство, что стабилитрон (но не стабистор) является источником шума. Поэтому описанный стабилизатор не следует применять в ответственных блоках радиоаппаратуры. Еще раз подчеркну, что при проектировании новой аппаратуры в качестве вторичного источника питания лучше подойдут малогабаритные малошумящие компенсационные стабилизаторы, такие как ADP7142.

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне (http://www.radiohlam.ru/)


Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки R Н.

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Итак, для начала рассчитаем значение сопротивления R. Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора:

R Ц = U1 МИН / I Н.МАКС = 11 / 0,1 = 110 Ом То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки: R Э = U2 / I Н.МАКС = 9 / 0,1 = 90 Ом Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление: R = R Ц – R Э = 110 – 90 = 20 Ом С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 ). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении:

U R.МАКС = U1 МАКС – U2 = 15 – 9 = 6 В А теперь определим ток через резистор R из того же закона Ома: I R.МАКС = U R.МАКС / R = 6 / 20 = 0,3 А = 300 мА Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть I R.МАКС = I VD.МАКС = 0,3 А = 300 мА Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы .

А вот мощность рассеяния стабилитрона рассчитаем:

P МАКС = I VD.МАКС * U СТ = 0,3 * 9 = 2,7 Вт = 2700 мВт Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

U СТ = 9 В – номинальное напряжение стабилизации
I СТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
Р МАКС = 2700 мВт – мощность рассеяния стабилитрона при I СТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая

Электропитание маломощных устройств РЭС с небольшим пределом изменения тока потребления обычно осуществляется от параметрических стабилизаторов напряжения (ПСН). Кроме того, эти стабилизаторы широко используются в качестве источников опорного напряжения (ИОН) в компенсационных стабилизаторах напряжения и тока.

Параметрический стабилизатор осуществляет стабилизацию выходного напряжения за счет свойств вольтамперных характеристик нелинейного элемента, например стабилитрона, стабис-тора, дросселя насыщения. Структурная схема параметрического стабилизатора приведена на рис. 15.1. В ней нелинейный элемент НЭ подключен к входному питающему напряжению?/ 0 через гасящий резистор /?„ а параллельно НЭ включена нагрузка Я н. При увеличении входного напряжения?/ 0 ток через нелинейный элемент НЭ увеличивается, в результате этого возрастает падение напряжения на гасящем резисторе так, что выходное напряжение на нагрузке остается постоянным. Стабильность выходного напряжения в параметрическом стабилизаторе определяется наклоном вольтамперной характеристики НЭ и является невысокой. В параметрическом стабилизаторе нет возможности плавной регулировки выходного напряжения и точной установки его номинала.

Как отмечалось, для стабилизации постоянного напряжения в ПСН применяются элементы с нелинейной ВАХ. Одним из таких элементов является кремниевый стабилитрон. Основная схема однокаскадного ПСН приведена на рис. 15.2.

Рис. 15.1

Рис. 15.2. Схема однокаскадного параметрического стабилизатора

В этой схеме при изменении входного напряжения и т на ±Д С/ т ток через стабилитрон VI) изменяется на А/ ст, что приводит к незначительным изменениям напряжения на стабилитроне (на ±Д?/„), а следовательно, и на нагрузке. Значение Д{/ н зависит от Д?/ вх, сопротивления ограничивающего резистора Я т и

ди ст

дифференциального сопротивления стабилитрона г ст = --.

д1 ст

На рис. 15.3 приведен пример статической характеристики стабилизатора для пояснения принципа стабилизации и определения коэффициента стабилизации.

Коэффициент стабилизации (по входному напряжению) схемы ПСН нарис. 15.2 и характеристикам на рис. 15.3 представляется как

А и к и т

и, „ « г

Внутреннее сопротивление стабилизатора определяется в основном дифференциальным сопротивлением стабилитрона. На рис. 15.4 приведены зависимости г ст маломощных стабилитронов от напряжения стабилизации для различных токов стабилизации / сх. Из графиков видно, что при увеличении / ст дифференциальное сопротивление уменьшается и достигает

минимального значения для стабилизации 6-8 В.

стабилитронов с напряжением

Рис. 15.4.

Рис. 15.5.

Температурный коэффициент напряжения а н стабилитрона определяет величину отклонения выходного напряжения ПСН при изменении температуры. На рис. 15.5 приведена зависимость а н от напряжения стабилизации. Для приборов с и ст > 5,5 В при повышении температуры напряжение на стабилитроне возрастает. Поэтому температурная компенсация в этом случае может быть достигнута включением последовательно со стабилитроном диодов в прямом направлении (У0 2 , К/) 3 на рис. 15.6, а).

Однако при этом возрастает внутреннее сопротивление ПСН за счет дифференциальных сопротивлений термокомпенсирующих диодов в прямом направлении г диф, которое зависит от выбранного типа диода и режима его работы. В качестве примера на рис. 15.7 приведены зависимости г диф от прямого тока для не-


Рис. 15.6.

а - с термокомпенсирующими диодами К/) 2 , К/) 3 ; б - двухкаскадного стабилизатора; в - мостового стабилизатора с одним стабилитроном; г - мостового стабилизатора с двумя стабилитронами; д - стабилизатора с эмиттерным повторителем; е - с токостабилизирующим двухполюсником; ж - с токостабилизирующими транзисторами различной проводимости п-р-п ир-п-р

которых типов диодов и стабилитронов, включенных в прямом направлении. Необходимо отметить, что термокомпенсированный ПСН имеет повышенное значение г ст и пониженный коэффициент стабилизации. На рис. 15.8 приведены зависимости температурного коэффициента от величины прямого тока для стабилитронов типа Д814 и диода ДЗ10, которые могут быть использованы для температурной компенсации.

Если требуется повышенная стабильность выходного напряжения ПСН, то применяются двухкаскадные или мостовые схемы стабилизаторов, приведенные на рис. 15.6, б , в, г. Предварительная стабилизация напряжения в двухкаскадных ПСН (рис. 15.6, б), осуществляемая с помощью элементов Я г, УЕ) и Г/) 2 , позволяет получить достаточно высокий коэффициент стабилизации выходного напряжения

Я Г Я г2

к = к к ~ -1Л__ г| _

ст2к К ст1 К ст2 у,)(у

^ нх "ст1 " *ст2/"стЗ " "ст4 " "ст5 /

где к ст, к ст2 - коэффициенты стабилизации первого и второго каскадов; г стЬ г ст2 - дифференциальные сопротивления стабилитронов -КТ> 3 ; а*ст4, ^ст5 - дифференциальные сопротивления

диодов Уй 4, Г/) 5 . Температурный уход напряжения на нагрузке и внутреннее сопротивление двухкаскадного ПСН такие же, как в схеме на рис. 15.6, а.

Рис. 15.7.

от прямого тока

Рис. 15.8.

от прямого тока

Повышение коэффициента стабилизации в мостовых схемах (рис. 15.6, в , г) достигается за счет компенсирующего напряжения, возникающего на резисторе R 2 или стабилитроне VD при изменениях входного напряжения. Коэффициент стабилизации при R H = const:

для схемы рис. 15.6, в

и»

U,Ar„/R 3 -R 2 /R,y

где U H - напряжение на нагрузке R„;

для схемы на рис. 15.6, г

где г ст і и г ст 2 - дифференциальные сопротивления стабилитронов уЬ и уо 2 .

В мостовых параметрических стабилизаторах теоретически коэффициент стабилизации может быть бесконечно большим, если выбрать элементы, исходя из условий: для рис. 15.6, в г ст /Я 3 = R 2 /R а для схемы на рис. 15.6, г г ст2 /Я 2 = г ст /Я. Внутреннее сопротивление для схемы на рис. 15.6, в г н = г С1 + Я 2 , а для схемы на рис. 15.6, г

Г н Гст1+ Г -т2-

Следует отметить, что относительно высокая стабильность выходного напряжения в схемах ПСН на рис. 15.6, б-г достигается за счет значительного ухудшения КПД по сравнению со схемой на рис. 15.3. Повысить стабильность выходного напряжения ПСН без ухудшения КПД позволяет схема на рис. 15.6, е за счет применения в ней источника тока, выполненного на транзисторе УТ, стабилитроне У[) (вместо которого могут быть включены два диода, последовательно соединенных в прямом направлении) и резисторах Я э и /? б. Это позволяет стабилизировать ток, протекающий через стабилитрон У1) 2 и тем самым резко уменьшить отклонения напряжения на нагрузке при больших изменениях входного напряжения. Температурный уход и внутреннее сопротивление этой схемы ПСН практически такие же, как в схеме на рис. 15.2.

Максимальная выходная мощность рассмотренных схем ПСН ограничивается предельными значениями тока стабилизации и рассеиваемой мощности стабилитрона. Если использовать транзистор в режиме эмиттерного повторителя со стабилитроном в базовой цепи (рис. 15.6, д ), то мощность нагрузки может быть увеличена. Коэффициент стабилизации ПСН на рис. 15.6, д

  • (15.5)
  • (15.6)

к - * и -

" (1 + цг ст /А 0)?/ и ’

а внутреннее сопротивление

/?(/)« р(г э +/* б /Л 21э);

г б, г э, И 2 э - соответственно сопротивления базы, эмиттера, коллектора и коэффициент передачи тока в схеме ОЭ транзистора.

Однако такой ПСН при 1/ ст > 5,5 В по температурному уходу уступает стабилизаторам, приведенным на рис. 15.6, а-г.

На рис. 15.6, ж приведена схема ПСН с дополнительными транзисторами различной проводимости. Для нее характерным является высокая стабильность выходного напряжения и возможность одновременного подключения двух нагрузок /? Н | и Я н2 к различным шинам входного напряжения. По коэффициенту стабилизации и температурному уходу эта схема незначительно превосходит схему на рис. 15.6, е , а внутренние сопротивления г ст ] и г ст 2 определяются стабилитронами СД и Е/) 2 соответственно.

Параметрические стабилизаторы напряжения до сих пор используются для питания маломощных устройств электронных изделий, поэтому необходимо уметь их рассчитывать.

Зачастую при повторении готовых конструкций, условия функционирования которых отличаются от рекомендованных разработчиком, требуется провести анализ работы параметрического стабилизатора напряжения для уточнения значения сопротивления балластного резистора.

Указанные задачи решены с помощью разработанного автором файла в Microsoft Excel. Приведено два варианта расчета параметрического стабилизатора напряжения и расчет для анализа условий работы стабилитрона в готовой схеме.

Объектами расчета и анализа в примерах выступают параметрические стабилизаторы двух известных конструкций усилителей мощности звуковой частоты. Это c Интерлавки и от Андрея Зеленин а.

Основные соотношения для расчета параметрического стабилизатора на стабилитроне

На рис. 1 показана принципиальная схема параметрического стабилизатора: Uвх – входное нестабилизированное напряжение, Uвых=Uст – выходное стабилизированное напряжение, Iст – ток через стабилитрон, Iн – ток нагрузки, R 0 – балластный (ограничительный, гасящий) резистор.

Uвх=Uст+(Iн+Iст)R 0 =Uст+IR 0 , (1)
I= Iн+Iст – ток, протекающий через балластный резистор R 0 .


Рис. 1. Схема параметрического стабилизатора напряжения на стабилитроне


Как видно из рис. 1, параметрический стабилизатор на кремниевом стабилитроне представляет собой делитель напряжения, состоящий из балластного резистора R 0 с линейной Вольт - амперной характеристикой (ВАХ) и стабилитрона VD1, который можно рассматривать как резистор с резко нелинейной ВАХ.

При изменении напряжения Uвх изменяется ток через делитель, приводящий к изменению падения напряжения на резисторе R 0 , а напряжение на стабилитроне, следовательно, на нагрузке Rн практически не изменяется.

Малое изменение напряжения на нагрузке в диапазоне от Uст min до Uст max соответствует изменению тока через стабилитрон от Iст min до Iст max. Причем, минимальный ток через стабилитрон соответствует минимальному входному напряжению и максимальному току нагрузки, что достигается при сопротивлении балластного резистора

R 0 =(Uвх min-Uст min)/(Iн max+Iст min). (2)

В свою очередь, максимальный ток через стабилитрон будет протекать при минимальном токе нагрузки и максимальном входном напряжении.

Несложно найти условия работы стабилизатора:

ΔUвх=ΔUст+R 0 (ΔIст-ΔIн), (3)
где ΔUвх=Uвх max-Uвх min, ΔUст= Uст max-Uст min, ΔIст=Iст max- Iст min, ΔIн= Iн max-Iн min.

Положим для упрощения ΔUст=0 и проанализируем выражение (3).

Диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилитрона, поскольку в этом случае правая часть выражения становится отрицательной, и схема не будет работать как стабилизатор напряжения.


Если изменение тока нагрузки незначительно, выражение для условия работы стабилизатора упрощается:

ΔUвх= ΔIстR 0 . (4)

КПД параметрического стабилизатора определяется из выражения:

КПД=Uст Iн /(Uвх (Iн + Iст)=1/(Nст(1+ Iст/Iн)), (5)
где Nст=Uвх/Uст – коэффициент передачи стабилизатора; обычно Nст=1,4…2.

Из выражения (5) следует, что чем ниже коэффициент передачи стабилизатора и чем меньше отношение тока через стабилитрон к току нагрузки, тем выше КПД.

Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации:

Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R 0 Uст/rдUвх=R 0 /Nстrд=KфКПД, (6)
где rд - динамическое сопротивление стабилитрона; Kф – коэффициент фильтрации.

Первый вариант расчета параметрического стабилизатора

проведем для случая, когда напряжение питания нестабильно, а сопротивление нагрузки относительно постоянно.


Исходными данными для расчета служат: Uвых, Iн, ΔIн, Uвх, ΔUвх.

Для получения требуемого выходного напряжения по справочнику выбираем стабилитрон с параметрами: Uст= Uвых, Iст max, Iст min, rд.

Требуемоемое входное напряжение рассчитываем исходя из крайних оптимальных коэффициентов передачи стабилизатора Nст=1,4…2, который также может быть выбран пользователем в любом необходимом диапазоне Nст:

Iст р=0,5(Iст min+Iст max)> Iн.

Вычислим сопротивление балластного резистора:

R 0 =(Uвх- Uст)/(Iст р+ Iн).

Рассчитаем с двукратным запасом мощность балластного резистора:

Po=2(Iст р+ Iн) 2 R 0 .

Проверим выбранный режим работы стабилизатора.
Расчет произведен верно, если при одновременном изменении Uвх на величину ΔUвх и Iн на величину ΔIн ток стабилитрона не выходит за пределы Iст max и Iст min:
Iст р max=(Uвх+ ΔUвх- Uст)/(R 0 -(Iн- ΔIн))<0,8 Iст max;
Iст р min=(Uвх- Uст)/(R0-(Iн+ ΔIн))>1,2 Iст min.


Здесь учтен запас в 20%, необходимый для надежной работы стабилитрона. Принятое при расчете наибольшее рабочее значение тока через стабилитрон не более 0,8 от справочного Iст max вызвано соображениями эксплуатационной надежности устройства, чтобы мощность, рассеиваемая на стабилитроне была ниже предельной. Для гарантированного обеспечения требуемого коэффициента стабилизации минимальное рабочее значение тока через стабилитрон Iст р min принято в расчете в 1,2 раза большим, чем Iст min.

Если полученные значения токов Iст р max и Iст р min выходят за пределы допустимых значений, то необходимо выбрать другое значение Iст р, изменить сопротивление R 0 или заменить стабилитрон.


Также вычислим параметры стабилизатора, определяющие его качество и эффективность – коэффициент стабилизации Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R 0 /(rдNст),
коэффициент полезного действия КПД=Uст Iн /(Uвх (Iн + Iст))=1/(Nст(1+ Iст/Iн)),
и коэффициент фильтрации Kф=Kст/КПД.

Пример расчета №1

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток в нагрузке Iн=10 мА; изменение тока в нагрузке ΔIн=2 мА; изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон типа Д814Б, для которого Uст= Uн=9 В; rд=10 Ом; Iст max=36 мА; Iст min=3 мА.

Заносим приведенную выше информацию в соответствующие ячейки исходных данных (выделены светло-голубой заливкой) листа «Первый вариант расчета» таблицы Microsoft Excel «Расчет и анализ работы параметрического стабилизатора напряжения.xlsx» и тут же получаем результаты вычислений в расчетных ячейках, выделенных светло-коричневой заливкой:

входное напряжение Uвх=15,0 В; сопротивление балластного резистора R 0 =240 Ом, мощность балластного резистора с двукратным запасом Po=0,3 Вт; Kст=15,0, КПД=24%, Kф=62,5 (см. рис. 2).


Рис. 2. Печать с экрана примера расчета №1

Выбираем резистор сопротивлением 240 Ом мощностью 0,5 Вт.

Предположим, что на входе стабилизатора имеются пульсации переменного напряжения амплитудой Uп вх=0,1 В=100 мВ. Амплитуда пульсаций на выходе стабилизатора составит Uп ст= Uп вх/Kф=100/62,5=1,6 мВ.

Пример расчета №2

Произведем расчет параметрического стабилизатора для для питающих напряжений Uп=Uвх=±25 В; ±35 В и ±45 В.

Расчет выполним для параметрического стабилизатора положительной полярности (R5, VD1, C2), поскольку другой стабилизатор, отрицательной полярности (R6, VD2, C4) отличается только направлением включения стабилитрона.

Подготовим исходные данные: стабилизированное напряжение на нагрузке Uн=12 В, ток в нагрузке Iн=(12-0,5)/R2=11,5/10=1,15 мА, ΔIн=0,115 мА, изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон BZX55C12, имеющий следующие параметры: Uст= Uн=12 В; rд=20 Ом; Iст max=32 мА; Iст min=5 мА.

Результаты вычислений показаны на рис. 3; для Uп=±25 В R5=R6=1,3 кОм (0,25 Вт); для Uп=±35 В R5=R6=2,4 кОм (0,5 Вт); для Uп=±45 В R5=R6=3,6 кОм (1 Вт).


Рис. 3. Расчет параметрических стабилизаторов для усилителя «Green Lanzar»

Второй вариант расчета параметрического стабилизатора

в качестве исходных данных использует предельные значения тока в нагрузке Iн min и Iн max, что при Iн min=0 позволяет предусмотреть режим холостого хода стабилизатора. Для постоянной нагрузки выбирают Iн max= Iн min.


Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.

Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.

Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:

Iст р max=0,8 Iст max,
Iст р min=1,2 Iст min.

Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.

Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:

(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,
где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.

Если неравенство не выполняется, нужно:
применить более мощный стабилитрон;
задаться меньшими значениями ΔUвх н и ΔUвх в;
уменьшить Iн max или увеличить Iн min.


Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:

Uвх= Uст[(Iст р max+I н min)- (Iст р min+ I н max)]/[(Iст р max+I н min)(1- ΔUвх н)- (Iст р min+I н max)(1+ΔUвх в)].

Сопротивление балластного резистора:

R 0 = Uвх(ΔUвх в+ΔUвх н)/[(Iст р max+ Iн min)- (Iст р min+ Iн max)].

Также вычисляем мощность резистора с двукратным запасом:

Po=2(Uвх(1+ ΔUвх н)- Uст) 2 /R 0 .

По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.

Пример расчета №3

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.

Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.

После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):

Uвх=14 В, R 0 =221 Ом, Po=0,45 Вт, Kст=14,2.


Рис. 4. Скриншот параметрического стабилизатора режимом холостого хода

Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.

Анализ работы параметрического стабилизатора

Исходные данные анализа следующие: Uн, Iн, ΔIн, ΔUвх, R 0 .

Также для анализа необходимы параметры стабилитрона: Uст= Uн, rд, Iст max и Iст min.

Анализ сводится к вычислению рабочего тока стабилитрона Iст р=(Uвх-Uст)/R 0 -Iн; коэффициента передачи Nст= Uвх/Uст; мощности Po балластного резистора, коэффициента стабилизации Kст, КПД и коэффициента фильтрации Kф.

Важной является проверка режима работы стабилитрона в схеме стабилизатора, которая выполняется по формулам, аналогичным приведенным в первом варианте расчета.

Пример анализа №1

Проанализируем номиналы балластных резисторов R3 и R4 компенсационных стабилизаторов напряжения усилителя «Ланзар» в зависимости от используемого напряжения питания.

Заявлен диапазон питающих напряжений усилителя от Uп=±30 В до ±65 В, в то время как на принципиальной схеме указаны сопротивления балластных резисторов R 0 =R3=R4=2,2 кОм (1 Вт) .

В другой публикации рекомендуется выбирать величину сопротивления балластных резисторов в зависимости от напряжения питания усилителя по формуле R 0 =(Uп-15)/I, где I=8…10 мА. В таблице 1 выполнен расчет по указанной формуле для диапазона питающих напряжений усилителя с шагом в 5 В.

Исходные данные для анализа: стабилизированное напряжение на нагрузке Uн=15 В, ток в нагрузке Iн=(15-0,5)/R5=14,5/6,8=2,13 мА, ΔIн=0,213 мА, изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон 1N4744A, имеющий следующие параметры: Uст= Uн=15 В; rд=14 Ом; Iст max=61 мА; Iст min=5 мА.

Анализ работы параметрических стабилизаторов в усилителе «Ланзар» показал, что минимальный ток стабилизатора Iст р min выбран на пределе с запасом всего 3…14% вместо требуемых 20% (рис. 5).


Рис. 5. Режимы работы стабилизаторов в усилителе «Ланзар» в зависимости от выбранного напряжения питания

Используя средство анализа данных электронной таблицы Microsoft Excel «Подбор параметра», уточним сопротивления балластных резисторов. Для этого перейдем в ячейку с формулой для Iст р min (ячейка C26 ) и в меню выберем Данные -> «Анализ «что-если »->Подбор параметра .

Установим в ячейке C26 значение 6,0 (запас 20% от Iст min), изменяя значение ячейки, в которой занесено сопротивление балластного резистора ($C$15 ).

Получим R 0 =1,438 кОм. Занесем в эту ячейку ближайшее значение сопротивления из стандартного ряда R 0 =1,3 кОм.

Проведя в таблице указанную операцию для всех значений питающих напряжений, получим следующий результат (рис. 6).


Рис. 6. Уточнение режимов работы параметрических стабилизаторов усилителя «Ланзар»

Итоги анализа сведены также в таблицу 2.

Мощность резисторов для напряжений питания усилителя от ±30 В до ±40 В – 0,5 Вт, для остальных напряжений – 1 Вт.

Итог

Необходим расчет даже такого простого устройства как параметрический стабилизатор напряжения. Выбор значения сопротивления балластного резистора «на глазок» может вызвать ошибки проектирования, которые не сразу будут замечены.

Перед сборкой понравившейся конструкции целесообразно проанализировать и при необходимости уточнить режим работы стабилитрона параметрического стабилизатора с помощью предлагаемых электронных таблиц в Microsoft Excel.



Читайте также: