Последовательное и параллельное соединение резисторов. Резисторы Как сделать переменное сопротивление

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является , другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора - это номинальное сопротивление.

2. Второй параметр, по которому его выбирают - это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления - описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I

Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:

Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:

Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях - это полезное свойство, например . В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Мы описывали это . Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:

Здесь U - это количество вольт «сожженных» на резисторе, а I - это ток, который через него протекает.

Выделение тепла на резисторе объясняется законом Джоуля-Ленца, который связывает количество выделенной теплоты с током и сопротивлением. Чем больше первое или второе, тем больше выделится тепла.

Чтобы было удобно из этой формулы, путем подстановки закона Ома для участка цепи, выведено еще две формулы.

Для определения мощности через приложенное напряжение к резистору:

Для определения мощности через ток, протекающий через резистор:

Немного практики

Для примера, давайте определим, какая мощность выделяется на резистор номиналом в 1 Ом, подключенного к источнику напряжения в 12В.

Для начала посчитаем ток в цепи:

Теперь мощность по классической формуле:

P=12*12=144 Вт.

Одного действия при расчетах можно избежать, если пользоваться вышеупомянутыми формулами, давайте это проверим:

P=12^2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) - 0.125 - 0.25 - 0.5 - 1 - 2 - 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

В продолжение этой темы:

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно - ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно - это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора - это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Вроде бы простая деталька, чего тут может быть сложного? Ан нет! Есть в использовании этой штуки пара хитростей. Конструктивно переменный резистор устроен также как и нарисован на схеме — полоска из материала с сопротивлением, к краям припаяны контакты, но есть еще подвижный третий вывод, который может принимать любое положение на этой полоске, деля сопротивление на части. Может служить как перестариваемым делителем напряжения (потенциометром) так и переменным резистором — если нужно просто менять сопротивление.

Хитрость конструктивная:
Допустим, нам надо сделать переменное сопротивление. Выводов нам надо два, а у девайса их три. Вроде бы напрашивается очевидная вещь — не использовать один крайний вывод, а пользоваться только средним и вторым крайним. Плохая идея! Почему? Да просто в момент движения по полоске подвижный контакт может подпрыгивать, подрагивать и всячески терять контакт с поверхностью. При этом сопротивление нашего переменного резистора становится под бесконечность, вызывая помехи при настройке, искрение и выгорание графитовой дорожки резистора, вывод настраимого девайса из допустимого режима настройки, что может быть фатально.
Решение? Соединить крайний вывод с средним. В этом случае, худшее что ждет девайс — кратковременное появление максимального сопротивления, но не обрыв.

Борьба с предельными значениями.
Если переменным резистором регулируется ток, например питание светодиода, то при выведении в крайнее положение мы можем вывести сопротивление в ноль, а это по сути дела отстутствие резистора — светодиод обуглится и сгорит. Так что нужно вводить дополнительный резистор, задающий минимально допустимое сопротивление. Причем тут есть два решения — очевидное и красивое:) Очевидное понятно в своей простоте, а красивое замечательно тем, что у нас не меняется максимально возможное сопротивление, при невозможности вывести движок на ноль. При крайне верхнем положении движка сопротивление будет равно (R1*R2)/(R1+R2) — минимальное сопротивление. А в крайне нижнем будет равно R1 — тому которое мы и рассчитали, и не надо делать поправку на добавочный резистор. Красиво же! :)

Если надо воткнуть ограничение по обеим сторонам, то просто вставляем по постоянному резистору сверху и снизу. Просто и эффективно. Заодно можно и получить увеличение точности, по принципу приведенному ниже.

Порой бывает нужно регулировать сопротивление на много кОм, но регулировать совсем чуть чуть — на доли процента. Чтобы не ловить отверткой эти микроградусы поворта движка на большом резисторе, то ставят два переменника. Один на большое сопротивление, а второй на маленькое, равное величине предполагаемой регулировки. В итоге мы имеем две крутилки — одна «Грубо » вторая «Точно » Большой выставляем примерное значение, а потом мелкой добиваем его до кондиции.

Какие номиналы можно менять достаточно гибко, а какие нет?
Как пересчитать номинал элемента?
Зачем здесь стоит этот резистор, конденсатор и т.д.?
Ответы на эти вопросы, вы с легкостью найдете в этой статье.

Любой новичок сталкивался с проблемой отсутствия нужного номинала элемента у себя в запасах при сборке схемы, и наткнувшись на этот айсберг, мог решить эту задачу тремя путями.
1. Просто забросить паять эту схему
2. Пойти и купить нужный элемент
3. Заменить элемент на такой же, только с другим номиналом

В этой статье мы поговорим о третьем пути решения проблемы. Какие номиналы можно менять достаточно гибко, а какие нет? Как пересчитать номинал элемента? Зачем здесь стоит этот резистор, конденсатор и т.д.? Ответы на эти вопросы, вы с легкостью найдете в этой статье.
И так, стоит начать со схемы. В ниже приведенной схеме (рис 1) пока не указаны номиналы элементов, что бы они не отвлекали вас лишний раз.

Рисунок 1:

Теперь стоит разобраться: какую функцию здесь выполняет каждый элемент.
Начнем с конденсаторов С1, С2, С5 – это разделительные конденсаторы, основная задача которых не пропускать постоянную составляющею от Eк.
Конденсатор Сф – это емкостной фильтр. Его основная задача сглаживать пульсации от Ек. Тут стоит немного пояснить: выпрямленное напряжение на выходе у источника питания не совсем прямое, а имеет некоторые искажения, которые могут влиять на работу схемы и которые надо свисти к минимуму. Если вы используете батарейку, аккумулятор или купленный источник постоянного напряжения, то скорее всего Сф вам не нужен, но если питаете схему от самодельного источника, то лучше подстраховаться.

Рисунок 2:
Напряжение на выходе не идеального источника постоянного напряжения


С3, С4 – конденсаторы, которые ликвидируют отрицательную обратную связь по переменной составляющей. Не будем особенно углубляться в подробности, дам лишь один совет. Если в схеме, которую вы решили собрать есть такие конденсаторы, старайтесь найти элемент того номинала который указан в схеме.

С конденсаторами разобрались, теперь переходим к резисторам.
R3, R7 – резисторы, которые ограничивают ток коллектора. Тут все очень просто. Их номинал зависит от величины Ек.
R1, R2 и R5, R6 – это делители напряжения, фиксированные напряжениям смещения. Звучит заумно, но если в двух словах, то эти резисторы определяют режим работы транзистора, то есть на сколько его надо открыть или закрыть.
R4, R8 – это резисторы эмиттерной стабилизации, В общих чертах, они добавляют вашему усилителю стабильности. Как это работает это отдельная статья, поэтому поверьте мне на слово.

Ну а теперь транзисторы.
VT1 и VT2 – это усилительные элементы, включенные по схеме общий эмиттер. Схема с общем эмиттером довольно часто применяется в усилителях НЧ. Ее отличительные особенности – это большой коэффициент усиления по напряжению и выходной сигнал будет сдвинут по фазе относительно входного на 180 градусов.

Рисунок 3.1.


Рисунок 3.2. Выходной сигнал (при Ku=1)


После теории всегда нужна практика. Рассмотрим любую рабочею схему усилителя.

Рисунок 4.


Перед тем, как начать, стоит заметить, что вместо Rн здесь стоит динамик BA1. И так, начнем.
С1 и С3 можно допустить отклонение параметров на 10 – 20 %.
Важно! От емкости этих конденсаторов зависит область низких частот. Чем меньше их емкость – тем больше вероятность не услышать бас гитару.
С2 стараемся сохранить номинал такой же как на схеме.
С4 это наш Сф, только изображен немного по другому. Тут действует правило, чем емкость больше – тем лучше, но везде есть границы, поэтому можно допустить отклонение от номинала в схеме на процентов 30-40 или вообще отказаться от этого элемента.
R1, R2 – конечно хорошо R1 взять такого же номинала, а вместо R2 поставить подстрочный резистор номиналом в 15к. Зачем? Объясняю: все элементы имеют отклонение от своего номинала, который написан на корпусе, следовательно и наш R1 не исключение, а значит вместо 33к можно поставить и 32, а то и 30к, не подозревая об этом. А значит наш транзистор будет получать не корректную установку, на сколько ему открыть или закрыться, появятся искажения выходного сигнала. Поняв это, мы можем увеличить или уменьшить номинал R2, что скомпенсирует не точное значение R1 и устранит искажения. Вот такая хитрость поможет скорректировать работу усилителя не выпаивая элементы.
R3 – Его номинал можно менять только зная режим работы транзистора. В этой схеме транзистор работает в режиме А, что это значит.
Это означает, что наш транзистор (VT1), усиливает напряжение почти без искажений, но у него низкое КПД.
Тогда Uкэ = 0,5Ек, следовательно Iк=Uкэ/R3. Вот и все, из этих простых формул видно, что если мы увеличили номинал R3, мы должны увеличить напряжение питания (GB1) и наоборот.
Но помните: эта фишка работает только если вместо R2 запаян подстрочный резистор. Если нет, то старайтесь не отклоняться от номинала, указанного в схеме больше чем на 15 %.
R4, R5 отклонение не более чем на 20 %. Поверьте, вам этого хватит.

Теперь поговорим о транзисторах.
VT1 включен по известной нам схеме с общим эмиттером, а вот VT2 включен по схеме с общим коллектором. Это значит, что VT2 усиливает ток и сохраняет фазу выходного напряжения относительно входного.
Отсюда и название усилитель мощности, поскольку VT1 усиливает напряжение, а VT2 усиливает ток. А мощность, как нам известно, это произведение тока на напряжение.
Мой тут совет: берите КТ315 с любым буквенным номиналом, в большинстве случаев это не влияет на параметры схемы.

Надеюсь, вам помогла эта статья и ответила на те вопросы, которые я поставил в начале. Если вам кажется, что я где то некорректно выразился, упустил важный факт или у вас просто появился вопрос, вы всегда можете пообщаться со мной в комментариях, ибо я ни куда не денусь.

Как ни крути, но если Вы не знаете обозначения элементов на схемах и вообще не знаете, что такое радиосхема, то Вы - не электронщик! Но это дело поправимо, не переживайте;-). Начинаю цикл статей про виды и обозначения на схемах радиоэлементов. Начнем с самого распространненого радиоэлемента - резистора .

Радиоэлемент "резистор" имеет важное свойство - сопротивление электрическому току. Резисторы бывают постоянными и переменными. В жизни постоянные резисторы могут выглядеть примерно вот так:

Слева мы видим резистор, который рассеивает очень большую мощность, поэтому он такой большой. Справа мы видим маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье Маркировка резисторов. А вот так выглядит на электрических схемах :

Наше отечественное изображение резистора показывают прямоугольником (слева), а заморский вариант (справа), или как говорят - буржуйский, используется в иностранных радиосхемах.

А вот так выглядит маркировка мощности на них:


Переменные резисторы выглядят как-то так:

Что такое резистор

Резисторы производят, в основном, в виде трубок из фарфора или керамики с металлическими выводами на обоих концах. На поверхности трубок может быть нанесен, например, слой углерода (у углеродных резисторов) или даже очень тонкий слой драгоценного металла (у металлизированных резисторов).

Так же резистор может быть выполнен из проволоки с высоким удельным сопротивлением (проволочные резисторы).

Основным параметром резистора является его постоянное сопротивление. В области больших частот у резистора, помимо сопротивления, появляются такие характеристики, как емкость и. Эти параметры резистора можно представить в виде следующей модели:


  • R = сопротивление резистивного материала,
  • CL = собственная емкость резистора,
  • LR = индуктивность резистора,
  • LS = индуктивность его выводов.

Здесь видно, что резистор имеет помимо собственного сопротивления еще и составляющие индукции и емкости. При применении в цепях переменного тока эти характеристики играют роль реактивного сопротивления, который в сочетании с собственным сопротивлением создают дополнительное сопротивление в схеме, которое в некоторых случаях необходимо учитывать.

Основными параметрами резисторов являются:

  • Номинальное сопротивление - дано с учетом больших допустимых отклонений, содержащихся в диапазоне 0,1…20%.
  • Номинальная мощность – максимально допустимая мощность рассеивания.

Номинальное напряжение – равно наибольшему напряжению, которое не вызывает изменения в свойствах резистора, и, в частности его повреждения. Номинальные значения напряжений для большинства резисторов составляет от нескольких десятков до нескольких сотен вольт.

На основании размера резистивного слоя или сечения проволоки можно определить значение сопротивления. В электронных схемах, в основном, используются резисторы многослойные. В случае работы с большими значениями тока и мощности, используются проволочные резистор.

Резисторы многослойные металлизированные являются термически стабильными, они надежные в работе и имеют низкий уровень шума (важно в профессиональной электронике).

Единицей измерения сопротивления является Ом (символ омега), и в основном на схемах обозначается буквой – R.

Из закона Ома: сопротивление резистора в 1 Ом - это такое сопротивление, когда при напряжении на его выводах в 1 вольт через него протекает ток равный 1 амперу.

Номинальный ряд и цветовая маркировка резисторов

Большинство производимых в мире резисторов имеют сопротивление из так называемого номинального ряда (Е). Каждый из видов номинального ряда поделен на декады, и в каждой десятке есть 6 (ряд E6), 12(ряд E12), (ряд E24) 24 значения.

Эти значения в декаде подобраны так, что с учетом допуска, сопротивления двух соседних значений перекрывают друг друга, и благодаря этому вы можете подобрать любые промежуточные сопротивления.

Стандартные допуски сопротивления резисторов равны 5, 10 или 20%. Соседние значения пересекаются в следующих случаях:

  • для ряда E6 с 20% допуском,
  • для ряда E12 с 10% допуском,
  • для ряда Е24 с 5% допуском.

Величина сопротивления и отклонение отмечаются на резисторе в виде нескольких цветных колец (или точек). Первые цветные кольца (2 или 3) определяют значение в Ом, а последнее кольцо – допуск (отклонение).У небольших резисторов, как правило, величина сопротивления, допуск и температурный коэффициент (ТКС) иногда наносится с помощью 4…6 цветных полос. Более подробно о цветовой маркировки резисторов читайте.

В типоразмер и мощность резисторов

Как известно, напряжение, поданное на резистор, вызывает протекание в нем тока, а значит, на таком резисторе выделяется определенная часть мощности в виде тепла. Для исправного функционирования, это тепло резистор должен рассеивать в окружающее пространство. Эта его способность напрямую зависит его размеров.

В электротехнике, электронике, физике встречается такое понятие, как резистор. Это довольно распространенный элемент электронных схем. Тем, кто не сталкивался с принципами радиотехники, тяжело разобраться в большом количестве составляющих систем любого прибора. Для начала следует понять принцип работы такого простого и широко распространенного элемента, как резистор. Без него не функционирует практически ни одна электросхема.

Что такое резистор

Это название берет свое начало от англ. resist, что переводится как «сопротивляться». Поэтому резистор еще называют сопротивлением.

Опираясь на такие обозначения, а также на расчет мощности цепи, подбирают требуемое оборудование.

Крепление резисторов

Резистор - это электротехнический элемент, который чаще всего имеет два выхода для подсоединения к схеме. Существуют также разновидности оборудования с тремя выводами. Их можно встретить среди переменных и подстроечных резисторов.

Используются также специальные их разновидности, имеющие отводы. Обычно их несколько.

В современной электронике все чаще применяются резисторы, предназначенные для поверхностного монтажа. Они выглядят как крохотные детали прямоугольной формы и не имеют привычных проволочных выводов. Вместо этого для подключения подобной детали предназначены две полоски из металла, расположенные по краям резистора.

Поверхностный монтаж производится путем припаивания элемента сопротивления на печатные проводники, находящиеся на плате.

Популярность подобных деталей объясняется их минимальными размерами , что соответствует современным требованиям электротехнического оборудования. Их маркировка имеет отличную от проволочных резисторов систему.

Роль резисторов в схеме

Резистор - это элемент, который может выполнять в электросхеме различные функции . Самыми распространенными являются токоограничивающая, стягивающая и разделительная роль.

Токоограничивающий резистор представляет собой прибор, предназначенный для обеспечения требуемой силы тока, при которой компонент оборудования будет функционировать бесперебойно.

Стягивающий (растягивающий) резистор применяют на входе логических компонентов схемы, которым важно знать только наличие или отсутствие напряжения (логическая единица или ноль). Резистор в подобной схеме нужен для обеспечения нормальной работы системы, чтобы она не оставалась в подвешенном состоянии. Нежелательный ток, поступающий извне на вход, будет при помощи стягивающего резистора уходить в землю. Это гарантирует определение входом позиции "логический ноль".

Делитель напряжения требуется для взятия только определенной части тока, необходимой для правильной работы электрокомпонента.

Маркировка

Существует определенный принцип выделения основных качеств резисторов. Его широко применяют во всем мире.

Резистор - это (фото представлено ниже) небольшая деталь, имеющая цветовую или знаковую маркировку.

Главной характеристикой детали электросхемы является ее сопротивление, поэтому именно данный показатель определен на корпусе. Буквенные обозначения характеризуют систему измерений: R - омы, К - килоомы, М - мегаомы.

В последнее время многие производители переходят на другой тип маркировки - цветовой. Он проще в нанесении при больших объемах производства.

Самые точные резисторы имеют до 6 цветов на корпусе. Две первые полосы соответствуют номиналу напряжения.

Рассмотрев, что собой представляет элемент сопротивления в схеме приборов различной техники , следует сделать вывод, что резистор - это оборудование, обеспечивающее всю систему необходимой для работы силой тока.

Электрическая схема практически любого современного прибора имеет резисторы. Они могут быть разных видов . Их функции также разнообразны. Что такое резистор, следует знать каждому даже начинающему радиолюбителю. А также любому человеку, решившему самостоятельно отремонтировать какой-нибудь прибор или бытовую технику.

С английского резистор переводится как сопротивление. Это пассивный элемент цепи, который, благодаря своим свойствам, обеспечивает нужное напряжение и регулирует значение тока.

Чтобы понять, что такое резистор, следует обладать хотя бы самыми общими представлениями об электрике. Сопротивление измеряется в Омах. Оно связано зависимостью с напряжением и силой тока. Проводник обладает сопротивлением 1 Ом, если к концам его приложено напряжение 1 В, и по нему протекает ток силой в 1 А. Поэтому резистор является управлением другими параметрами электрической системы.

Поэтому такой элемент контролирует и ограничивает ток. В цепи резистор может делить напряжение. Характеристиками резистора являются величина номинального сопротивления и мощность, которая показывает, какое количество энергии он способен рассеять без перегрева.

Виды резисторов

Все резисторы разделяют на три большие группы. Они могут быть переменными, постоянными и подстроечными.


Сопротивление резистора постоянного типа существенно не меняется в зависимости от условий извне. Небольшие отклонения от номинального значения могут быть вызваны изменением температуры, внутренними шумами, а также скачками электричества.

Переменные резисторы могут произвольно менять сопротивление. Для этого прибор обычно имеет поворачивающуюся ручку или ползунок (например, в радиоприемнике - регулятор силы звука). Он позволяет плавно менять параметры цепи.

Подстроечный резистор имеет винт со шлицом для регулировки тока в цепи. Его характеристики меняют довольно редко.

Полупроводниковые резисторы

Существуют резисторы, которые меняют свои свойства под воздействием окружающей среды. К ним относятся терморезисторы, варисторы и фоторезисторы. Сопротивление резистора подобного типа меняется только под воздействием определенных факторов.

Терморезистор уменьшает или увеличивает свое сопротивление при увеличении температуры. Это свойство используют в некоторых видах приборов, например, в саморегулирующихся обогревательных кабелях для водопроводов, труб.

Варисторы уменьшают свою проводимость тока при увеличении напряжения. Их применяют для защиты, стабилизации и регулировки электрических величин.

Фоторезисторы реагируют на солнечный свет или на электромагнитное излучение. Чаще всего используют подобные устройства с положительным фотоэффектом. При попадании на него излучения резистор уменьшает свою силу сопротивления. Такие элементы часто применяют в датчиках, реле, счетчиках.

Резистор в цепи является пассивным элементом. Он не накапливает, а поглощает энергию таких двух составляющих, как сила тока и напряжение.

Резистор не меняет параметры в зависимости от частоты протекающего через него тока. Он одинаково работает как в цепи постоянного, так и переменного тока низкой и высокой частотности. Единственным исключением считаются проволочные разновидности, которые обладают индуктивностью.

Резистор - линейный элемент. В зависимости от типа соединения в цепи различают параллельные и последовательные резисторы. Их суммарное сопротивление при последовательном соединении равняется их сумме.

Несколько сложнее производится расчет второго типа соединения. Параллельные резисторы суммируют по величинам обратно пропорциональных сопротивлению. Эти величины еще называют проводимостью.

Все элементы сопротивления электрической системы, выпускаемые по ГОСТу, объединяются в серии. Они составляют номинальный ряд, который увеличивается путем умножения исходного показателя на 1, 10, 100, 1 кОм, 10 кОм и т. д. Если в ряду есть значения 3, 5, то продолжение ряда считается в десятках - 35, в сотнях - 350.

Номиналы резисторов в пределах ряда по количеству серий отвечают типу точности, выбранной производителем. Самая популярная серия Е24 включает в себя 24 базовых показателя сопротивления резистора. Ее точность - ±5%.

Обозначение номиналов резисторов в схеме имеет определенный вид. Так, если сопротивление рассчитано в Омах, то за числом может стоять буква Е или вообще ничего. Если же значение указано в килоомах, то за ним может стоять буква к. Число сопротивления в МОм обозначения имеет букву М.

Маркировка

Резисторы с малой мощностью имеют и небольшие габариты.

А в современной технике используют чаще всего именно такие приборы. Обозначение резисторов можно нанести на корпус, только прочитать его будет крайне тяжело.

Чтобы хоть как-то сократить надпись, стали применять буквенные обозначения, которые ставят сзади числа для десятичных значений и впереди числа для сотен.

Американские резисторы маркируют тремя цифрами. Первые две из них обозначают номиналы резисторов, а третья - количество нулей десятков, добавляемых к значению.

Однако в процессе производства нередки случаи, когда маркировка оказывается нанесенной на сторону, повернутую к плате. Поэтому используют и другие типы обозначений.

Цветовая маркировка

Чтобы свойства, присущие резистору, можно было определить со всех сторон, стали применять цветовую маркировку.

Резисторы с допустимым изменением параметров в 20% обозначают тремя линиями. Если это прибор средней точности (5-10% погрешность), используют всего 4 маркера. Самые точные экземпляры имеют обозначение резисторов в виде 5-6 полос.

Две первые из них соответствуют номиналу детали. Если полос четыре, то третья из них говорит о десятичном множителе первых двух полос. При этом четвертый маркер говорит о точности резистора.

Если полос всего пять, то третья из них - это третий знак сопротивления, четвертая - степень показателя, а пятая - точность. Шестая полоса указывает на температурный коэффициент сопротивления (ТКС).

Считают полосы с той стороны, где они ближе находятся к краю. Если это четырехполосные разновидности, последними всегда идут золотая или серебряная полосы.

Разновидности по технологии изготовления

Чтобы глубже вникнуть в вопрос, что такое резистор, следует рассмотреть его виды по способу производства.

Проволочные резисторы чаще всего имеют высокий уровень индуктивности. Их изготавливают путем намотки на каркас проволоки.

Пленочные металлические резисторы являются наиболее распространенным типом. На пластиковый сердечник наносится тонкая пленка из металла. На концы конструкции надеты колпачки, к которым подведены проволочные выводы. Ток в резисторе этого типа встречает большее сопротивление при прорезе в керамическом сердечнике винтовой канавки.

Металлофольговые экземпляры при производстве выполняют из тонкой ленты. Угольные резисторы используют сопротивление графита. Интегральные виды выполнены на основе слаболегированного проводника. Такие резисторы могут иметь большую нелинейность вольт-амперных показателей. Их применяют в интегральных микросхемах. В этом случае использовать резисторы другого вида не технологично или даже нереально.

Резисторы с низким ТКС и уровнем шумов

К резисторам с низким ТКС относятся углеродистые и бороуглеродистые разновидности.

Углеродистые резисторы работают на основе пленки пиролитического углерода. Они имеют повышенную стабильность параметров. Их небольшой ТКС имеет отрицательный характер. Резисторы стойкие к импульсным нагрузкам.

Бороуглеродистые разновидности имеют в слое проводника некоторое количество бора. Это позволяет максимально уменьшить ТКС.

Низкий уровень шумов имеют металлопленочные и металлоокисные резисторы. У них хорошая частотная характеристика и стойкость к температурным колебаниям. ТКС может быть как положительным, так и отрицательным.

Ознакомившись с понятием, что такое резистор, можно правильно выбрать и применять этот элемент электрической системы. Являясь одними из наиболее часто применяющихся, они встречаются практически во всех сферах деятельности человека. Их функции очень разнообразны. Существующие разновидности предоставляют широкий выбор подобных изделий. При этом, имея некоторое представление о их конструкции, можно будет выполнить ремонт практически любого прибора или бытовой техники.

Друзья, всем привет! На дворе зима а календарь говорит мне, что будни перетекают в приятные праздничные выходные, так что самое время для новой статьи. Для тех кто меня не знает, скажу, что меня зовут Владимир Васильев и я веду вот этот самый радиолюбительский блог, так что добро пожаловать!

В мы разбирались с понятием электрического тока и напряжения. В ней буквально на пальцах я постарался объяснить что представляет собой электричество. В помощь применял некие «сантехнические аналогии».

Боле того, я наметил для себя написать ряд обучающих статей для совсем начинающих радиолюбителей- электронщиков, так что дальше будет больше - не пропустите.

Сегодняшняя статья будет не исключением, сегодня я постараюсь как можно подробнее осветить тему резисторов. Резисторы хоть и являются, наверно самыми простыми радиокомпонентами, но у начинающих могут вызвать массу вопросов. А отсутствие ответов на них может привести к полному бардаку в голове и привести к отсутствию мотивации и желанию развиваться.

Что такое сопротивление?

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Чтобы ответить на этот вопрос, давайте вернемся снова к нашей сантехнической аналогии. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока измеряемую в амперах. Сопротивление которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов измеряемое в омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм ². Величину сопротивления нетрудно оценить сравнив с медью у которой удельное сопротивление 0,0175 Ом*мм ². Неплохо да?

При пропускании тока через материал с высоким сопротивлением , мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Как выглядит резистор?

В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением . И каждый вид резисторов находит свое применение. Так давайте остановимся и постараемся уделить вниманием некоторые из них.


Само название говорит о том, что они обладают постоянным фиксированным сопротивлением. Каждый такой резистор изготавливается с определенным сопротивлением, определенной рассеиваемой мощностью.

Рассеиваемая мощность - это еще одна характеристика резисторов, так же как и сопротивление. Мощность рассеяний говорит о том, какую мощность может рассеять резистор в виде тепла (вы наверное замечали, что резистор во время работы может значительно нагреваться).

Естественно, что на заводе не могут изготавливать резисторы абсолютно любые. Поэтому постоянные резисторы имеют определенную точность указываемую в процентах. Эта величина показывает в каких пределах будет гулять результирующее сопротивление.И естественно, чем точнее резистор, тем дороже он будет. Так зачем переплачивать?

Также сама величина сопротивления не может быть любой. Обычно сопротивление постоянных резисторов соответствует определенному номинальному ряду сопротивлений. Эти сопротивления обычно выбираются из рядов типо Е3, Е6, Е12,Е24

Как видите резисторы из ряда Е24 имеют более богатый набор сопротивлений. Но это еще не предел так как существуют номинальные ряды E48, E96, E192.

На электрических схемах постоянные резисторы обозначаются эдаким прямоугольником с выводами. На самом условном графическом обозначении может надписываться мощность рассеяния.

Так изображается обычный постоянный резистор. Мощность рассеивания может не указываться

Резисторы с рассеиваемой мощностью 0,125 Вт
Это изображение резистора с мощностью рассевания 0,25 Вт.
Резистор с рассеиваемой мощностью 1 Вт
Резистор с рассеиваемой мощностью 2 Вт.


Вы когда-нибудь обращали внимание на различные «крутилки» в старой аналоговой технике. Например, задумывались ли о том что вы крутите, прибавляя громкость в старом, возможно даже ламповом телевизоре?

Многие регуляторы и различные «крутилки»представляют собой переменные резисторы. Так же как и постоянные резисторы, переменные также имеют различную рассеивающую мощность. Однако их сопротивление может меняться в широких пределах.

Переменные резисторы служат для регулирования напряжения или тока в уже готовом изделии. Как я уже упоминал этим резистором может регулироваться сопротивление в схеме формирования звука. Тогда громкость звука будет меняться пропорционально углу поворота ручки резистора. Так сам корпус находится внутри устройства, а та самая крутилка остается на поверхности.

Более того, бывают еще и сдвоенные, строенные, счетверенные и так далее переменные резисторы. Обычно их применяют, когда нужно параллельное изменение сопротивления сразу в нескольких участках схемы.


Переменный резистор это очень хорошо, но что если нам нужно изменение или подстройка сопротивления лишь на этапе сборки изделия?

Переменный резистор нам в этом не очень подходит. Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.

Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.

Подбор резисторов имеет место быть когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом нужно чтобы резистор был как можно большей точностью 1% или даже 0,5%.

Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей. Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем.

Формулы и свойства

При выборе резистора, помимо его конструктивной особенности , следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.

Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас.

И вот что получается, мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.

Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно ток в проводах возрос.

Но что если мы поставили резистор с прежней мощностью рассеяния? При возросшем токе, новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора


Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А. Мощность которая будет рассеиваться на резисторе будет равняться


Видите какие грабли могут подстерегать на пути. Поэтому при выборе резистора, обязательно нужно смотреть его допустимую мощность рассеяния.

Последовательное соединение резисторов

А давайте теперь посмотрим как будут меняться свойства цепи при последовательном расположении резисторов. Итак у нас есть источник питания и далее стоят последовательно три резистора с различным сопротивлением.

Попробуем определить какой ток протекает в цепи.

Здесь хочется упомянуть, для тех кто не в теме, что электрический ток в цепи только один. Есть правило Кирхгофа, которое гласит что сумма токов втекающих в узел равно сумме токов вытекающих из узла. А так как в данной схеме у нас последовательное расположение резисторов и никаких узлов и в помине нет, то ясно, что ток будет один.

Для определения тока, нам нужно определить полное сопротивление цепи. Находим сумму всех резисторов показанных на схеме.

Полное сопротивление получилось равным 1101 Ом. Теперь зная что полное напряжение (напряжение источника питания)равно 10 В, а полное сопротивление равно 1101 Ом, тогда ток в цепи равняется I=U/R=10В/1101 Ом=0,009 А =9 мА

Зная ток мы можем определить напряжение, высаживаемое на каждом резисторе. Для этого также воспользуемся законом Ома. И получается напряжение на резисторе R1 будет равно U1=I*R1=0.009А*1000Ом=9В. Ну и тогда для остальных резисторов U2=0.9В, U3=0.09В. Теперь можно и проверить сложив все эти напряжения, ну и получив в результате значенье близкое напряжению питания.

Ах да вот вам и делитель напряжения. Если сделать отвод после каждого резистора то можно убедиться в наличии еще некоторого набора напряжений. Если при этом использовать равные сопротивления то эффект делителя напряжения будет еще более очевиден.


Кликните для увеличения

На изображении видно как меняется напряжение между разными точками -потенциалами.

Так как резисторы сами по себе являются хорошими потребителями тока, то понятно, что при использовании делителя напряжения, стоит выбирать резисторы с минимальными сопротивлениями. Кстати мощность расходуемая на каждом резисторе будет одинаковой.

Для резистора R1 мощность будет равняться P=I*R1=3.33A*3.33В=11,0889Вт. Округляем и получаем 11Вт. И каждый резистор естественно должен быть на это рассчитан. Потребляемая мощность всей цепи будет P=I*U=3.33A*10В=33,3Вт.

Сейчас я вам покажу какая мощность будет для резисторов имеющих разное сопротивление.


Кликните для увеличения

Мощность потребляемая всей цепочкой, изображенной на рисунке, будет равняться P=I*U=0.09A*10В=0,9Вт.

Теперь рассчитаем мощность потребляемую каждым резистором:
Для резистора R1: P=I*U=0.09A*0.9В=0,081Вт;

Для резистора R2: P=I*U=0.09A*0.09В=0,0081Вт;

Для резистора R3: P=I*U=0.09A*9В=0,81Вт.

Из этих наших расчетов становится понятной закономерность:

  • Чем больше общее сопротивление цепочки резисторов, тем меньше будет ток в цепи
  • Чем больше сопротивление конкретного резистора в цепи, тем большая мощность будет на нем выделяться и тем больше он будет греться.

Поэтому становится понятной необходимость подбирать номиналы резисторов в соответствии с их потребляемой мощностью.

Параллельное соединение резисторов

С последовательным расположение резисторов думаю более менее понятно. Так давайте рассмотрим параллельное соединение резисторов.

Здесь на этом изображении схемы показано различное расположение резисторов. Хотя в заголовке я упомянул о параллельном соединении, думаю наличие последовательно соединенного резистора R1 позволит нам разобраться в некоторых тонкостях.

Итак суть заключается в том что последовательная схема соединения резисторов является делителем напряжения, а вот параллельное соединение представляет собой делитель тока.

Рассмотрим это подробнее.

Ток течет от точки с большим потенциалом к точке с меньшим потенциалом. Естественно, что ток из точки с потенциалом 10В стремится к точке нулевого потенциала - земле. Маршрут тока будет: Точка10В ->>точка А->>точка В->>Земля.

На участке пути Точка 10 -Точка А, ток будет максимальным, ну просто потому, что ток бежит по прямой и не разделяется на развилках.

Далее по правилу Кирхгофа, ток будет раздваиваться. Получается ток в цепи резисторов R2 и R4 будет одним а в цепи с резистором R3 другим. Сумма токов этих двух участков будет равняться току на самом первом отрезке (от источника питания до точки А).

Давайте рассчитаем эту схему и узнаем значение тока на каждом участке.

Для начала узнаем сопротивление участка цепи резисторов R2, R4

Значение резистора R3 нам известен и равен 100Ом.

Теперь находим сопротивления участка АВ. Сопротивление цепи резисторов, соединенных параллельно будет вычислено по формуле:

Ага, подставили в формулу наши значения для суммы резисторов R2 и R4 (Сумма равна 30 Ом и подставляется вместо формульной R1) и значение резистора R3 равное 100 Ом (Подставляется вместо формульной R2). Вычисленное значение сопротивления на участке АВ равняется 23 Ом.

Как видите выполнив несложные вычисления наша схема упростилась и свернулась и стала нам уже более знакомой.

Ну и полное сопротивление цепи будет равняться R=R1+R2=23Ом+1Ом=24Ом. Это мы нашли уже по формуле для последовательного соединения. Мы это рассматривали так что на этом останавливаться не будем.

Теперь ток на участке до разветвлений (участок Точка 10В ->>Точка А) мы сможем найти по формуле Ома.

I=U/R=10В/24Ом=0,42A . Получилось 0,42 ампера. Как мы уже обсуждали этот ток будет один на всем пути от точки максимального потенциала, до точки А. На участке А В, значение тока будет равно сумме токов с участков полученных после разделения.

Чтобы определить ток на каждом участке между точками А и В, нам нужно найти напряжение между точками А и В.

Оно как уже известно будет меньше напряжения питания 10В. Его мы найдем по формуле U=I*R=0.42A*23Ом=9,66В.

Как вы могли заметить полный ток в точе А (равный сумме токов параллельных участков) умножается на результирующее сопротивление запараллеленных (сопротивление резистора R1 мы не учитываем) участков цепи.

Теперь мы можем найти ток в цепи резисторов R2, R4. Для этого напряжение между точками А и В разделим на сумму этих двух резисторов. I=U/(R2+R4)=9.66В/ 30Ом=0,322А.

Ток в цепи резистора R3 тоже найти не сложно. I=U/R3=9.66В/100Ом=0,097А.

Как видите при параллельно соединении резисторов ток делится пропорционально значениям сопротивлений. Чем больше сопротивление резистора, тем меньше будет ток на этом участке цепи.

В тоже время напряжение между точками А и В, будет относиться к каждому из параллельных участков (напряжение U=9.66В мы использовали для расчетов и там и там).

Здесь хочется сказать как напряжение и ток распределяются по схеме.

Как я уже говорил ток до разветвления равен сумме токов после развилки. Впрочем умный мужик Кирхгоф нам это уже рассказывал.

Получается следующее: Ток I на развилке разделится на три I1, I2, I3, а затем снова воссоединится в I как было и в самом начале, получаем I=I1+I2+I3.


Для напряжения или разности потенциалов, что есть одно и тоже будет следующее. Разность потенциалов между точками А и С (далее буду говорить напряжение AC), не равна напряжениям BE, CF,DG. В тоже время напряжения BE, CF,DG , будут равны между собой. Напряжение на участке FH вообще равно нулю, так как напряжению просто не на чем высаживаться (нет резисторов).

Думаю тему параллельного соединения резисторов я раскрыл, но если есть еще какие-то вопросы то пишите в комментариях, чем смогу помогу

Преобразование звезды в треугольник и обратно

Существуют схемы, в которых резисторы соединены так, что не совсем понятно где есть а где параллельное. И как же с этим быть?

Для этих ситуаций есть способы упрощения схем и вот одни из них это преобразование треугольника в эквивалентную звезду или наоборот, если это необходимо.


Для преобразования треугольника в звезду считать будем по формулам:

Для того чтобы совершить обратное преобразование нужно воспользоваться несколько другими формулами:

С вашего позволения я не буду приводить конкретные примеры , все что требуется это только подставить в формулы конкретные значения и получить результат.

Этот метод эквивалентного преобразования будет служить хорошим подспорьем в мутных случаях, когда не совсем понятно с какой стороны подступиться к схеме. А тут порой поменяв звезду на треугольник ситуация проясняется и становится более знакомой.

Ну чтож дорогие друзья вот и все, что я хотел вам сегодня рассказать. Мне кажется эта информация будет полезной для вас и принесет свои плоды.

Хочу еще добавить, что многое из того что я здесь выложил очень хорошо расписано в книгах и, так что рекомендую прочитать обзорные статьи и скачать себе эти книжки. А будет еще лучше, если вы их раздобудете где-нибудь в бумажном варианте.

P.S. У меня на днях возникла одна идея о том как можно получить интересный способ заработка на знаниях электроники и вообще радиолюбительском хобби так что обязательно подпишитесь на обновления.

Кроме того относительно недавно появился еще один прогрессивный способ подписки через форму сервиса Email рассылок, так что люди подписываются и получают некие приятные бонусы, так что добро пожаловать.

А на этом у меня действительно все, я желаю вам успехов во всем, прекрасного настроения и до новых встреч.

С н/п Владимир Васильев.

Конструктор ЗНАТОК 320-Znat «320 схем» - это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.

Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив, позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату - основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.

Используя этот конструктор можно собрать до 320 различных схем, для построения которых есть развернутое и красочное руководство. А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.

Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:

Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.

Приемы растягивания диапазона регулировки, обеспечения точной настройки (10+)

Растягиваем диапазон регулировки. Грубая настройка, точная подстройка

Иногда при проектировании радиоэлектронных схем возникает необходимость обеспечить возможность регулировки с малым допуском ошибки. Такая регулировка еще называется регулировкой с растянутым диапазоном. Рассмотрим способы растягивания диапазона.

Для подстройки параметров схемы чаще всего применяются переменные / подстроечные конденсаторы и резисторы. Иногда можно увидеть также катушки индуктивности, с изменяющейся индуктивностью за счет перемещения сердечника. Остановимся на конденсаторных и резисторных схемах. В отношении схемы с переменными дросселями я дам дополнительное пояснение.

Механическое растягивание

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.

Светомузыка, светомузыкальная приставка своими руками. Схема, конструк...
Как самому собрать свето-музыку. Оригинальная конструкция свето-музыкальной сист...

Высоковольтный полевой транзистор irfp450. МОП, MOSFET. Свойства, пара...
Применение и параметры IRFP450, высоковольтного полевого транзистора...

Трансформатор тока. Токовые клещи. Схема. Устройство. Характеристики. ...
Принцип действия токового трансформатора. Проектирование. Формулы для расчета...

Дроссель, катушка индуктивности. Принцип работы. Математическая модель...
Катушка индуктивности, дроссель в электронных схемах. Принцип работы. Применение...




Читайте также: