Индикатор включения нагрузки переменного тока. Схемы простых индикаторов потребляемой мощности (К176ЛА7)

Принципиальные схемы простых индикаторов наличия сети 220В на светодиодах, меняем старые неоновые индикаторные лампы на светодиоды. В электрооборудовании повсеместно применяются индикаторные неоновые лампы для индикации включения аппаратуры.

В большинстве случаев схема как на рисунке 1. То есть, неоновая лампа через резистор сопротивлением 150-200 киолом подключается к сети переменного тока. Порог пробоя неоновой лампы ниже 220V, потому она легко пробивается и светится. А резистор ограничивает ток через неё, чтобы она не взорвалась от превышения тока.

Бывают и неоновые лампы со встроенными токоограничительными резисторами, в таких схемах кажется как будто неоновая лампа включена в сеть без резистора. На самом деле резистор спрятан в её цоколе или в её проволочном выводе.

Недостаток неоновых индикаторных ламп в слабом свечении и только розовом цвете свечения, ну и еще в том что это стекло. Плюс, неоновые лампы сейчас в продаже встречаются реже светодиодов. Понятно, что есть соблазн сделать аналогичный индикатор включения, но на светодиоде, тем более светодиоды бывают разных цветов и значительно более яркие чем «неонки», ну и нет стекла.

Но, светодиод низковольтный прибор. Прямое напряжение обычно не более ЗV, да и обратное тоже весьма низкое. Даже если светодиодом заменить неоновую лампу, он выйдет из строя за счет превышения обратного напряжения при отрицательной полуволне сетевого напряжения.

Рис. 1. Типовая схема подключения неоновой лампы к сети 220В.

Впрочем, есть двухцветные двухвыводные светодиоды. В корпусе такого светодиода есть два разноцветных светодиода, включенных встречно-параллельно. Такой светодиод можно подключить практически так же, как неоновую лампу (рис.2), только резистор взять сопротивлением поменьше, потому что для хорошей яркости через светодиод должен протекать ток больше чем через неоновую лампу.

Рис. 2. Схема индикатора сети 220В на двухцветном светодиоде.

В этой схеме одна половина двухцветного светодиода HL1 работает на одной полуволне, а вторая - на другой полуволне сетевого напряжения. В результате обратное напряжение на светодиоде не превышает прямого. Единственный недостаток - цвет. Он желтый. Потому что обычно два цвета - красный и зеленый, но горят они почти одновременно, потому зрительно выглядит как желтый цвет.

Рис. 3. Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе.

На рисунках 4 и 5 показана схема индикатора включения на двух светодиодах, включенных встречно-параллельно. Это почти то же, что на рис. 3 и 4, но светодиоды отдельные для каждого полупериода сетевого напряжения. Светодиоды могут быть как одного цвета, так и разного.

Рис. 4. Схема индикатора сети 220В с двумя светодиодами.

Рис. 5. Схема индикатора сети 220В с двумя светодиодами и конденсатором.

Но, если нужен только один светодиод, -второй можно заменить обычным диодом, например, 1N4148 (рис.6 и 7). И нет ничего страшного в том, что этот светодиод не рассчитан на напряжение электросети. Потому что обратное напряжение на нем не превысит прямого напряжения светодиода.

Рис. 6. Схема индикатора сети 220В со светодиодом и диодом.

Рис. 2. Схема индикатора сети 220В с одним светодиодом и конденсатором.

В схемах испытывались светодиоды, двухцветные типа L-53SRGW и одно-цветные типа АЛ307. Конечно же можно применить и любые другие аналогичные индикаторные светодиоды. Резисторы и конденсаторы так же могут быть других величин, - все зависит от того, какую силу тока нужно пустить через светодиод.

Андронов В. РК-2017-02.

Искать включатель освещения или розетку в темноте - занятие малоприятное. В продаже появились бытовые включатели освещения, оснащенные индикаторами, подсвечивающими их местоположение. Немного усовершенствовав схему, такой индикатор можно превратить в индикатор подключения нагрузки.
Индикатор подключения нагрузки (ИПН) представпяет собой устройство, встроенное внутрь розетки и индицирующее наличие контакта между вставленной сетевой вилкой от какого-либо бытового прибора и розеткой. Особенно удобен индикатор, если подключаемые приборы не имеют собственного сетевого индикатора. ИПН также полезен для радиоэлектронных изделий, у которых индикаторы включения находятся во вторичной цепи питания, поскольку позволяет проверить их входные цепи.
ИПН состоит из:
- датчика тока нагрузки на диодах VD2...VD6;
- Г-образного фильтра R1-C1;
- ключа на полевом транзисторе VT1;
- блока индикации на элементах VD9, VD10, R2, HL1.
Если к розетке XS1 не подключена нагрузка, то через диоды VD1...VD6 ток не протекает, накопительный конденсатор С1 разряжен и полевой транзистор VT1 закрыт. Ток стока VT1 равен нулю, индикатор HL1 не светится.

При подключении нагрузки к розетке XS1 ток нагрузки протекает через встреч но-параллельно включенные диод VD1 и цепочку диодов VD2...VD6. Отрицательные полуволны сетевого напряжения проходят через VD1. а положительные - через VD2.. .VD6. Падение напряжения на диодах VD2...VD6 через резистор R1 поступает на накопительный конденсатор С1 и заряжает его до величины, превышающей напряжение отсечки полевого транзистора VT1. Транзистор VT1 открывается, и через его канал исток-сток, резистор R2, светодиод HL1 и диод VD9 протекает ток. Светодиод HL1 ярко светится, сигнализируя о подключении нагрузки. Резистор R2 является токоограничительным, диод VD9 запрещает протекание тока через нагрузку при обратных полупериодах сетевого напряжения. Диод VD10 защищает HL1 от обратного напряжения.
Следует заметить, что прямое падение напряжения на диодах VD2.. VD6 зависит от мощности подключенной к розетке XS1 нагрузки и с уменьшением мощности нагрузки также уменьшается. Поэтому для того, чтобы индикатор "реагировал" даже на маломощные (менее 1 Вт) нагрузки, в схеме ИПН применен полевой транзистор КП504А. Он имеет максимальное напряжение исток-сток 240 В и позволяет коммутировать ток в цепи стока до 0,25 А. Управляющее напряжение (0... 10 В) подается на затвор относительно
истока. Транзистор КП504А имеет напряжение отсечки +0.6 В. Предельная мощность подключаемой нагрузки определяется максимальным прямым током диодов VD1...VD6 (1,7 А) и не должна превышать 500...700 Вт.
В схеме применены резисторы типа ОМЛТ. Конденсатор С1 - оксидный, типа К50-35 или зарубежного производства с рабочим напряжением не менее 16 В. Диоды VD1...VD6 - типа КД226В. КД226Г. КД226Д. Диоды VD9, VD10 могут быть заменены на КД105Б, КД102А или на другие миниатюрные с допустимым обратным напряжением не менее 200 В. Предохранитель FU1 - керамический, миниатюрный. Он устанавливается в головке держателя предохранителя типа ДПБ и вместе со светодиодом HL1 выносится на переднюю (верхнюю) панель розетки. При наличии предохранителей, впаиваемых в печатную плату, можно обойтись без держателя предохранителя. Светодиод HL1 - практически любой низковольтный с рабочим током до 20 мА. Для увеличения яркости свечения в качестве HL1 рекомендуется использовать светодиоды повышенной яркости свечения, например, ARL-5213PGC (зеленый). ARL-3214UWC (белый). ARL-3214UBC (голубой). Если с некоторыми типами светодиодов при закрытом VT1 будет наблюдаться незначительная подсветка светодиода, светодиод следует зашунтировать резистором сопротивлением 3...8.2 кОм.
При установке ИПН в розетку алюминиевые сетевые провода, подходящие к зажимам розетки, отсоединяются от них и через монтажные переходники подключаются к входу ИПН. Все компоненты ИПН, кроме HL1 и FU1, располагаются на плате, размеры которой определяются внутренними габаритами розетки.

А.ОЗНОБИХИН, г.Иркутск.

Первая схема это простейшей индикатор тока, его можно использовать в зарядных устройствах, в которых нет амперметров. Другая конструкция предназначена для дискретной индикации тока, потребляемой нагрузки, работающей в сети переменного тока. Индикация в ней происходит с помощью трех светодиодов, говорящих о том, что потребляемый ток превысил заданные значения включения.


Простой индикатор тока

В роли датчика тока в этом устройстве применены два соединенных в прямом направлении диода. Падения напряжения на них хватает для того, что бы засветился светодиод-индикатор. Последовательно с светодиодом включено сопротивление, номинал которого должен быть выбран таким, что бы при максимальных значениях тока нагрузки, ток через светодиод не превысил допустимый. Максимальный прямой ток диодов должен быть как минимум в два раза больше максимального тока нагрузки. Светодиод подойдет абсолютно любой.

Светодиодный индикатор тока сети

Благодаря малым габоритам, низкому потреблению электричества и невысокой потери мощности в цепи переменного напряжения 220В, радиолюбительская конструкция может быть легко встроено в стандартную бытовую , удлинител, автоматический выключатель. Индикация позволяет отследить не только наличие превышения тока но и быстро зафиксировать пробой обмоток электродвигателей или повышенную механическую нагрузку на электроинструмент.

Датчик тока построен на самодельных герконовых реле К1 - К3, обмотки которых имеют разное количество витков, поэтому, контакты герконов срабатывают при разных номиналах протекающего тока. В этой схеме обмотка первого реле имеет наибольшее количество витков, поэтому, контакты К1.1 замкнуться раньше других контактов. При потребляемой нагрузкой токе от 2 А до 4 А будет гореть только светодиод HL1. При замкнутых К1.1, но разомкнутых контактов остальных герконов, ток питания светодиода HL1 будет идти по диодным цепочкам VD9 - VD12 и VD13 - VD16. При увеличении контролируемого параметра более 4 А начнут срабатывать контакты геркона К2.1 и загориться еще HL2 Обмотка КЗ имеет минимальное количество витков, поэтому контакты К3.1 замыкаються при I в нагрузке более 8 А.

Так как, обмотки самодельных герконовых реле имеют малое количество витков, нагрев обмоток практически отсутствует. Узел светодиодного индикатора тока получает питание от бестрансформаторного блока питания, выполненного на конденсаторе С1, токоограничительных сопротивлениях R1, R2, мостовом выпрямителе VD1 -VD4. Емкость С2 сглаживает пульсации выпрямленного напряжения.

Катушки герконов изготовлены из обмоточного провода диаметром 0,82 мм в один ряд. Чтобы не испортить стеклянный корпус геркона, витки обмоток лучше наматывать на гладкой части стального сверла диаметром 3,2 мм. Расстояние между витками 0,5 мм. Катушка реле К1 - 11 витков, К2 - 6 витков, К3 - всего 4 витка. Ток срабатывания контактов зависит не только от количества витков, но и от конкретного типа геркона и места расположения катушки на баллоне, когда катушка расположена по центру корпуса геркона, чувствительность наилучшая.

Изменяя число витков катушек можно подобрать другие значения индикации тока подключенных нагрузок, при которых будут светиться светодиоды. Для небольшой коррекции можно изменять положение катушки на корпусе геркона. После настройки катушки фиксируются каплями полимерного клея.

Индикатор тока и мощности на 4 светодиодах

Предлагаемая радиолюбительская конструкция подойдет для световой индикации потребляемого тока (и мощности) нагрузкой, подсоединенной к переменной сети 220 В. Устройство включают в разрыв одного из сетевых проводов. Особенности конструкции - отсутствие источника питания и гальваническая развязка. Этого удалось достичь использованием ярких и токового трансформатора.

В состав схемы токового индикатора входят трансформатор Т1, два однополупериодных выпрямителя на VD1 и VD2 со сглаживающими емкостями С1 и С2. К первому выпрямителю подсоединены светодиоды HL1 и HL4, ко второму - HL2 и HL3. Параллельно HL2 - HL4 установлены подстроечные сопротивления R1 - R3. С помощью них можно регулировать выходной ток выпрямителя, при котором определенные светодиоды начинают гореть.

Когда ток нагрузки следует через первичную обмотку токового трансформатора Т1, во вторичной появляется переменное напряжение, которое выпрямляют выпрямители. Индикатор отрегулирован так, что при токе нагрузки ниже 0,5 А напряжения на выходах выпрямителей нехватает для свечения светодиодов. Если ток превысит этот уровень, начнётся слабое, но вполне заметное свечение светодиода HL1 (красного цвета). С ростом нагрузочного тока выходной ток выпрямителя также увеличивается. Если ток нагрузки достигнет уровня в 2 А, загорится светодиод HL2 (зелёного цвета), при токе выше 3-х А - HL3 (синего), а если ток будет более 4 А, начнёт гореть белый светодиод HL4. Домашние опыты показали, что устройство работоспособно до тока в нагрузке 12 А, для бытовых нужд этого вполне хватит, при этом ток протекающий через светодиоды не более 15-18 мА.

Все радиокомпоненты, кроме токового трансформатора, смонтированы на печатной плате из стеклотекстолита, чертёж которой показан на рисунке выше. В схеме индикатора используются подстроечные сопротивления СПЗ-19, емкости - оксидные, диоды можно взять любые маломощные выпрямительные, светодиоды - только повышенной яркости.

Токовый трансформатор сделан своими руками из понижающего трансформатора малогабаритного источника питания (120/12 В, 200 мА). Активное сопротивление первичной обмотки состовляет 200 Ом. Обмотки трансформатора намотаны в разных секциях. Для указанных выше параметров схемы число витков первичной обмотки трансформатора - три, провод должен быть в хорошей изоляции и рассчитан на сетевое напряжение и ток, потребляемый нагрузкой. Для изготовления трансформатора можно взять любой маломощный серийный понижающий трансформатор, например, ТП-121,ТП-112.

Для градуировки шкалы можно использовать амперметр переменного тока и понижающий трансформатор с напряжением вторичной обмотки 5-6 В и током до пары ампер. Изменяя номинал нагрузочного сопротивления, задают требуемый ток и подстроечными сопротивлениями добиваются зажигания соответствующего светодиода.

Правильная работа автомобильного аккумулятора - залог длительного срока ее эксплуатации и безопасной работы. Контроль режима зарядки-разрядки АКБ дает возможность вовремя предпринять меры, а также следить за правильной работой генератора, стартера и электропроводки автомобиля.

Индикатор контролирует падение напряжения на проводнике, соединяющем минусовой вывод АКБ с "Массой" автомобиля. Этот проводник подсоединен в классический резистивный измерительный мост R1-R5, что даает возможность снимать с него разнополярные сигналы и усиливать их с помощью операционного усилителя с однополярным питанием. В цепь отрицательной ОС ОУ DA1 подключены диоды VD1-VD4, которые расширяют пределы измеряемого тока, позволяя измерять даже ток потребления стартером при пуске двигателя автомобиля.

Регистрирующим инструментом является любой магнитоэлектрический миллиамперметр с шкалой с нулем посредине,например М733 с током полного отклонения стрелки в 50мкА. На шкале удобнее всего равномерно расположить три метки справа и слева от нуля: 5 А, 50 А и 500 А. Питает индикатор параметрический стабилизатор напряжения 6,6 В. Правый вывод сопротивления R5 оставляют постоянно подсоединенным к минусовому выводу батареи.

Для градуировки шкалы сначала подают питание непосредственно от батареи аккумуляторов и подстроечным сопротивлением R4 устанавливают стрелку микроамперметра на нуль. Затем при выключенном ключе зажигания подключаем плюсовой вывод батареи через мощное (около 60 Вт) сопротивление номиналом 2,4 Ом соединенное с корпусом автомобиля и подстроечным сопротивлением R7 устанавливают стрелку амперметра на отметку 5 А. После градуировки плюсовой вывод питания индикатора подсоединяем к плюсовому выводу бортовой сети автомобиля.

Искать включатель освещения или розетку в темноте - занятие малоприятное. Гораздо приятнее, когда видишь в темноте светящийся индикатор и ориентируешься на него. Особенно полезно оснастить таким индикатором те розетки, от которых питаются устройства, не имеющие индикаторов включения и предохранителей. Предлагаю усовершенствованный вариант устройства, оснащенный индикатором перегорания предохранителя.

Когда между вилкой подключаемой нагрузки и розеткой отсутствует контакт, индикатор не светится, извещая об отсутствии "отбора мощности" нагрузкой. Если нагрузка "берет мощность", светится синий индикатор, а когда нагрузка потребляет чрезмерную мощность, сгорает предохранитель, и включается красный мигающий светодиод.

Индикатор подключения нагрузки (ИПН) состоит из (рис.1):

  • предохранителя FU1 с индикатором перегорания на элементах VD1, VD2, R1, HL1, C1;
  • силовой обводной цепи на диоде VD6;
  • датчика тока нагрузки на диодах VD4, VD5 и детектора VD7, R2, С2;
  • ключа на полевом транзисторе VT1;
  • блока индикации на элементах VD8, HL2, R4, R3, VD3.

При перегорании предохранителя FU1, если нагрузка подключена к розетке XS1, ток протекает через ранее шунтировавшиеся нулевым сопротивлением предохранителя элементы индикатора перегорания. Выпрямительный диод VD1 пропускает только отрицательные

полуволны сетевого напряжения, которые поступают через токоограничительный резистор R1 на накопительный конденсатор С1 и подключенную параллельно ему нагрузку - мигающий светодиод HL1. VD1 защищает HL1 от обратного напряжения, а стабилитрон VD2 предохраняет HL1 от перегрузки прямым током.

Когда к розетке XS1 не подключена нагрузка, через диоды VD4.VD6 ток не протекает, накопительный конденсатор С2 разряжен и полевой транзистор VT1 закрыт.

Сопротивление канала (исток-сток) очень велико, и индикатор HL2 не светится.

При подключении нагрузки к розетке XS1 ток нагрузки протекает через встречно-параллельно включенные диод VD6 и цепочку диодов VD4, VD5. Отрицательные полуволны сетевого напряжения с нижнего по схеме сетевого провода проходят через VD6, а положительные - через VD4 и VD5.

Прямое падение напряжения на диодах VD4 и VD5 через резистор R2 и диод VD7 поступает на С2 и заряжает его до величины, превышающей напряжение отсечки (+0,6 В) полевого транзистора VT1. Транзистор VT1 открывается и через его канал, параллельно включенные VD8, HL2, R4 и далее через R3 и VD3 протекает ток. Светодиод HL2 ярко светится, сигнализируя о подключении нагрузки. Резистор R3 - токоограничительный, диод VD3 запрещает протекание тока при обратных полупериодах сетевого напряжения. Резистор R4 устраняет подсветку HL2 при закрытом VT1 и при необходимости подбирается в пределах от 3 до 8,2 кОм.

Прямое падение напряжения на датчике тока (VD4, VD5) зависит от мощности подключенной нагрузки. Чтобы индикатор "реагировал" даже на маломощные (менее 1 Вт) устройства, в схеме применен сравнительно дефицитный полевой транзистор. КП504А. Он имеет максимальное напряжение исток-сток 240 В и позволяет коммутировать ток в цепи стока до 0,25 А. Управляющее напряжение на затворе относительно истока - от 0 до 10 В. Напряжение отсечки. КП504А составляет +0,6 В. Максимальная мощность нагрузки, подключаемой к розетке XS1, определяется предельным прямым током диодов VD4.VD6 (1,7 А) и не должна превышать 500.700 Вт.

В схеме применены резисторы типа ОМЛТ. Конденсатор С1 - типа К50-35 или зарубежного производства с рабочим напряжением не менее 16 В, С2 - КМ. Диоды VD1, VD3, VD8 - КД105Б, КД102А или другие миниатюрные с допустимым обратным напряжением не менее 200 В, VD4.VD6 - КД226В, КД226Г, КД226Д, VD7 - германиевый. Д2 или. Д9 с любой буквой. Стабилитрон VD2 - маломощный, с напряжением стабилизации 3,9...5,6 В, например, КС139, КС147А, КС447А, КС156А. Светодиод HL1 можно заменить 5-миллиметровым красным МСД ARL-5013URC-B или немигающим повышенной яркости, например, желтым ARL-5213UYC. В последнем случае конденсатор С1 можно исключить. Светодиод HL2 можно заменить любым низковольтным зеленого (ARL-5213PGC), белого (ARL-3214UWC) или голубого (ARL-3214UBC) цвета, желательно повышенной яркости.

Почти все элементы устройства размещаются на печатной плате, чертеж которой приведен на рис.2. Плата встраивается в сетевую розетку либо в переходник-разветвитель ("тройник"), включаемый непосредственно в розетку. Возможен вариант его размещения в корпусе блока розеток на конце удлинителя- "переноски". Предохранитель FU1 на ток. ЗА - керамический, миниатюрный. Он устанавливается в головке держателя предохранителя типа. ДПБ и выносится на переднюю панель розетки так, чтобы не мешал включению вилок. При установке индикатора в розетку сетевые провода, подходившие к контактам розетки, аккуратно отсоединяются и через клеммные зажимные колодки подключаются к плате.

Индикатор нагрузки
А. ЛАТАЙ КО, г. Днепропетровск, Украина
Иногда потребитель электрической энергии и его выключатель установлены в разных помещениях. В таких случаях желательно иметь визуальный контроль включенного состояния потребителя, оснастив выключатель дополнительным индикатором. Автор предлагаемой статьи описывает сравнительно простую конструкцию такого индикатора, демонстрируя при этом грамотный подход к выбору его элементов. Редакция надеется, что эта сторона статьи будет полезна многим читателям.
Широко известны выключатели совмещенные в одном корпусе с индикатором наличия сетевого напряжения . Однако такой подход не гарантирует штатную работу потребителя, так как фактически контролируется лишь наличие напряжения на "выходе" выключателя. Чтобы убедиться, что напряжение достигло потребителя, необходимы дополнительные провода. Их легко предусмотреть при устройстве новой проводки, но при модернизации существующей это может вызвать значительные затруднения.
В ряде случаев более информативны и удобны в монтаже индикаторы, реагирующие на по,реи яемыи нагрузкой ток. Их включают последовательно с выключателем и нагрузкой. Прокладывать дополнительные провода не требуется. Примером такого решения может служить индикатор, предложенный в . Малое число используемых деталей позволяет уместить его в корпусе стандартного выключателя. Добавив к этому индикатору еще несколько деталей, удалось расширить его функции и сделать прибор более удобным.
На рис. 1 приведена схема доработанного индикатора. При разомкнутом выключателе SA1 в цепи лампы EL1 непрерывно течет слабый ток (приблизительно 9 мА), ограниченный емкостным сопротивлением конденсатора С1. Нить накаливания лампы при таком токе остается холодной а зе пеныи кристалл светодиода HL1 светится. Потребление электроэнергии в этом состоянии очень незначительно. При замкнутом выключателе SA1 индикатор работает, как описано в , цвет свечения светодиода сменяется красным.
Постоянная подсветка облегчает использование выключателя в темноте. При обрыве цепи, например, по причине перегорания лампы, светодиод остается выключенным при любом поло-
жении выключателя SA1. Это позволяет своевременно, еще до того, как возникнет необходимость включить освещение, заменить перегоревшую лампу или устранить обрыв проводов.
Преобразователем тока нагрузки в напряжение, необходимое для светодиода, служат диоды VD1-VD3. Идеально, если снимаемое с них напряжение не зависит от мощности нагрузки хотя бы в наиболее ходовом интервале 15...200 Вт. Чтобы сделать правильный выбор, были экспериментально сняты вольт-амперные характеристики некоторых диодов и малогабаритных диодных мостов (плюсовой и минусовой выводы мостов при измерении были соединены вместе).
Напряжение измерялось в установившемся тепловом режиме после прогрева испытуемого диода протекающим током. Дело в том, что с увеличением температуры кристалла падение напряжения на р-п-переходе диода уменьшается, что в какой-то мере компенсирует увеличение пропорционального току падения напряжения на омическом сопротивлении полупроводникового материала. За счет этого эф фекта наиболее пологая зависимость напряжения от тока наблюдается у нагревающихся до большей температуры малогабаритных диодов повышенной мощности (1N4007, 1N5817). Это подтверждают экспериментально снятые графики, изображенные на рис. 2.
В индикатор необходимо установить столько последовательно соединенных диодов, чтобы в сумме на них падало напряжение, превышающее прямое падение напряжения на "красном" кристалле светодиода (1,6...1,9 В). Три диода 1N4007 (суммарное напряжение около 2,4 В) удовлетворяют этому условию. Излишек гасит резистор R2. Если по конструк-
тивным соображениям вместо отдельных диодов предпочтительнее использовать малогабаритный выпрямительный мост, диоды VD2-VD5 можно заменить цепью, показанной на рис. 3. Свойств индикатора это не изменит.
Терморезистор RK1 с отрицательным температурным коэффициентом ограничивает начальный бросок тока через холодную нить лампы накаливания EL1 и диоды VD2-VD5, что способствует увеличению ресурса лампы и повышению надежности индикатора. В момент включения практически все напряжение сети приложено к имеющему значительное сопротивление холодному терморезистору, ток в цепи лампы меньше номинального. С прогревом сопротивление терморезистора уменьшается в десятки раз, а сопро-
тивление лампы EL1 возрастает. В установившемся режиме на терморезисторе падает всего 2...2,5 В, что почти не сказывается на яркости свечения лампы. Ее "замедленное" включение почти не заметно, так как переходный процесс длится не более 1 с.
Естественно, применение терморезистора эффективно только при условии, что интервал между выключением и последующим включением освещения превышает 5...7 мин, необходимых для его охлаждения. Для нагрузок, не имеющих ярко выраженного "пускового" тока, терморезистор не нужен и может быть исключен
На рис. 4 приведены фотоснимки обычного выключателя для скрытой проводки с установленным внутри индикатором. Его плата изготовлена из фольгированного стеклотекстолита с помощью резака. Ввиду ее простоты и многообразия конструкций выключателей чертеж платы не приводится.
Конденсатор С1 - К73-17. Выводы светодиода HL1 удлинены жестким изолированным проводом, а в клавише выключателя для него проделано отверстие овальной формы. Светодиод L-59SRSGW можно заменить другим трехвыводным двухцветным повышенной или обычной яркости, например, серии АЛС331. Подбирая светодиод, следует учитывать, что через него течет импульсный ток, пиковое значение KOioporo для "красного" кристалла в два, а для "зеленого" - в 3,14 раза больше среднего.
Заметно нагревающиеся диоды VD2-VD5 и терморезистор RK1 подняты над платой на всю длину выводов. Тип терморезистора - КМТ-12. Такие ранее применялись в системах размагничивания кинескопа телевизоров УЛПЦТ Так как рабочая температура терморезистора достигает 90 °С, он не должен касаться других деталей и пластмассового корпуса выключателя.

При мощности лампы более 150 Вт в лицевой крышке выключателя полезно просверлить несколько вентиляционных отверстий. А если мощность лампы 60 Вт и менее, от диска терморезистора необходимо, надпилив надфилем, отломить половину. Это увеличит вдвое начальное сопротивление терморезистора и во столько же раз уменьшит по верхность его охлаждения. Необходимая рабочая температура и малые по-
тери напряжения будут достигнуты при меньшем токе.
Налаживание сигнализатора сводится к установке подборкой резистора R2 тока через "красный" кристалл свето-диода 8... 10 мА. На ток через "зеленый" кристалл, зависящий от емкости конденсатора С1, номинал резистора R2 не влияет. Значение тока определяют по падению напряжения на резисторе R2, измеренному стрелочным вольтме-
тром магнитоэлектрической системы (например, авометром Ц4315).
ЛИТЕРАТУРА
1. Юшин А. Клавишные выключатели со световой индикацией. - Радио, 2005, № 5, с. 52.
2. Горенко С. Индикатор включенной нагрузки. - Радио, 2005, № 1, с. 25.



Читайте также: