Ванны ультазвуковой очистки с погружными излучателями. Инфразвуковой излучатель для шумных соседей Направленный ультразвуковой излучатель

Излучатели (ультразвуковые) активно применяются в эхолотах. Дополнительно устройства используются в приемниках. Современные модификации выделяются высокой частотностью и имеют хорошую проводимость. Чувствительность излучателя зависит от многих факторов. Также стоит отметить, что у моделей применяются клеммы, которые влияют на общий уровень сопротивления.

Схема устройства

Стандартная схема устройства содержит две клеммы и один конденсатор. Стержень используется диаметром от 1,2 см. Магнит для работы системы потребуется неодимового типа. В нижней части любого излучателя располагается подставка. Конденсаторы могут крепиться через расширитель либо клеммы. Обмотка селеноида применяется с проводимостью от 4 мк.

Кольцевая модификация

Кольцевые погружные ультразвуковые излучатели, как правило, производятся для эхолотов. Большинство моделей обладают дипольными конденсаторами. Подкладки под них подбираются из резины. Общий уровень сопротивления в устройствах данного типа равняется 50 Ом. Клеммы используются с переходником и без него. В верхней части селеноида располагается защитное кольцо. Стержень используется диаметром не менее 2,2 см. В некоторых случаях конденсаторы применяются канального типа с системой защиты. Проводимость при разряде у них составляет не менее 5 мк. При этом частотность может сильно меняться. В данном случае многое зависит от чувствительности элемента.

Устройство с яром

Ультразвуковой излучатель для увлажнителя с яром считается очень распространенным. Если рассматривать то у нее имеются три конденсатора. Как правило, они используются трехканального типа. Общий уровень сопротивления у излучателей данного типа составляет 55 Ом. Они часто ставятся на эхолоты и низкочастотные приемники. Также модели подходят для преобразователей. Магниты используются диаметром от 4,5 см. Подставки делаются из латуни либо стали. Проводимость при разряде составляет не более 5,2 Мк.

Некоторые модификации используются с верхним расположением яра. Как правило, он находится над подставкой. Также надо отметить, что есть излучатели с однополюсными переходниками. Соленоиды для них подходят только с высокой проводимостью. В верхней части устройства используется несколько колец. Чувствительность при разряде составляет примерно 10 мВ. Если рассматривать модификации на резисторных конденсаторах, то у них общий уровень сопротивления максимум доходит до 55 Ом.

Модель с двойной обмоткой

Излучатели (ультразвуковые) с двойной обмоткой в последнее время производятся с усилителем. Такие устройства активно применяются на преобразователях. Некоторые излучатели делаются с двойными конденсаторами. Обмотки используются с широкой лентой. Стержни подходят диаметром от 1,3 см. Клеммы должны обладать проводимостью не менее 5 мк. Частотность устройств зависит от многих факторов. В первую очередь учитывается диаметр стрежня. Также надо отметить, что расширители используются с подкладками и без них.

Излучатели на базе отражателя своими руками

Из отражателей можно сделать ультразвуковой излучатель своими руками. В первую очередь заготавливается неодимовый магнит. Подставка применяется шириной около 4,5 см. Обводку разрешается устанавливать только после стрежня. Также надо отметить, что магнит фиксируется на подкладке и замыкается кольцом.

Клеммы для устройства подбираются проводникового типа. Проводимость при разряде должна составлять около 6 мк. Общий уровень сопротивления у излучателей данного типа равняется не более 55 Ом. Конденсаторы используются разного типа. Непосредственно отражатели подбираются небольшой толщины. Для установки элементов придется воспользоваться Верхняя часть стрежня закручивается на пленке. В данном случае важно не перекрывать клеммы.

Устройства для эхолотов

Излучатели (ультразвуковые) для эхолотов обладают неплохой проводимостью. Диаметр стержня у стандартной модели равняется 2,4 см. Кольца, как правило, используются обтягивающего типа. Современные модели делаются с конусными подставками. У них малый вес и они могут работать в условиях повышенной влажности. Соленоиды применяются разного диаметра. В нижней части устройств обязательно накручивается изолента. При необходимости излучатель для эхолота можно сделать самостоятельно. Конденсаторы с этой целью применяются двухканального типа. Если рассматривать устройство со стержнем на 2,2 см, то общий уровень сопротивления у него составит 45 Ом.

Модификации для рыболокаторов

Излучатели (ультразвуковые) для рыболокаторов производятся с клеммами разной проводимости. Наиболее востребованными считаются модификации с переходниками и чувствительностью на уровне 12 мВ. Некоторые устройства оснащаются компактными одноканальными конденсаторами. Проводимость при загрузке у них составляет 2 мк. Магниты на излучатели устанавливаются разного диаметра.

Большинство моделей делаются с низкими подставками. Также надо отметить, что устройства выделяются высокой частотностью. Клеммы обладают неплохой проводимостью, но в данном случае многое зависит от толщины стрежня. В верхней части обмотки устанавливаются защитные кольца. Для увеличения проводимости излучателя применяются клеммы с чувствительностью от 15 мВ.

Модели низкого волнового сопротивления

Ультразвуковой излучатель для увлажнителя воздуха низкого выделяется компактными размерами. Обмотки используются толщиной от 0,2 см. Магниты устанавливаются на подставках либо подкладках. Клеммы фиксируются в верхней части устройства. Стандартная модификация включает в себя три конденсатора.

Показатель общего сопротивления составляет не более 30 Ом. Конденсаторы у некоторых моделей применяются двуканального типа. При этом проводимость составляет примерно 2 мк. Также есть модификации со стержнями большого диаметра. Они используются в эхолотах. Большинство излучателей производится специально для преобразователей. Кольца для зажима используются из резины либо пластика. В среднем диаметр стержня у модификации равняется 2,2 см.

Устройства высокого волнового сопротивления

Модификации данного типа делаются, как правило, для приемников. Общий уровень проводимости у них равняется 4 мк. Большинство устройств работает от контактных клемм. Также надо отметить, что существуют устройства с чувствительностью от 15 мВ. Конденсаторы на модификации подбирают трехканального типа. Также есть резисторные модели. У них общий уровень сопротивления стартует от 55 Ом. Магниты на мощный ультразвуковой излучатель устанавливаются только неодимового типа. В среднем диаметр детали составляет 4,5 см. Подставки могут производиться с накладками или защитными изолирующими пленками.

Модели с однопереходными конденсаторами

Устройства этого типа способны обеспечивать проводимость на уровне 5 мк. У них довольно высокая чувствительность. Стержни на ультразвуковой излучатель устанавливаются диаметром от 2 см. Обмотки используются только с кольцами из резины. В нижней части устройств применяются дипольные клеммы. Общий уровень сопротивления при загруженности составляет 5 Ом. Конденсаторы разрешается устанавливать на излучатели через расширители. Для продления низких частот используются переходники.

При необходимости можно сделать модификацию на два конденсатора. Для этого клеммы устанавливаются с проводимостью от 2,2 мк. Стержень подбирается небольшого диаметра. Также надо отметить, что потребуется короткая подставка из сплава алюминия. В качестве изоляции для клемм применяется изолента. В верхней части излучателя крепится два кольца. Непосредственно конденсаторы монтируются через дипольный расширитель. Общий уровень сопротивления не должен превышать 35 Ом. Чувствительность зависит от проводимости клемм.

Очистить предметы от ржавчины, грязи, налета поможет ультразвуковая ванна, изготовить которую можно своими руками. Для этого необходимо иметь определенное количество материалов и строго следовать правилам технологии изготовления прибора. Это достаточно простое устройство, позволяющее быстро и эффективно избавится от загрязнений на различных деталях, узлах и инструментах. Применяется прибор для изделий, чистка которых механическим способом категорически запрещается.

Что такое ультразвуковая ванна? Типы загрязнений

Ультразвуковая ванна представляет собой емкость, изготовленную из легированной стали, стандартного объема в 2 литра, что позволяет поместить туда единовременно несколько предметов небольшого размера. Для работы в условиях промышленного масштаба применяют ванны на 10 и 15 литров.

В основе работы устройства лежит воздействие на детали ультразвуком, частота колебаний которого превышает 18 кГц. После включения механизма жидкость, наливаемая в емкость, под действием генерации наполняется большим количеством пузырьков. Образовавшиеся молекулярные шарики воздуха плотно обволакивают погруженное изделие, притягивают грязь, лопаются под давлением. Использование такой технологии позволяет очистить самые недоступные для ручной обработки места. При этом не повреждается целостность поверхности и конструкции в целом.

Эффективно применение ультразвуковых ванн для удаления:

  • пленочных материалов;
  • защитных покрытий;
  • твердых налетов (нагаров, окислений, абразивных частиц).

При попадании в емкость любой элемент, покрытый плотным слоем коррозии, легко очищается от ржавчины.

В конструкцию ультразвуковых устройств входит три элемента. Излучатель является основным механизмом. Он преображает электрические колебания тока в механические, которые при попадании в жидкость воздействуют через стенки емкости на очищаемое изделие.

Излучатель работает в системе импульсной подачи, очень важно в перерывах между толчками следить за стабильностью условий. Весь проходящий процесс полностью контролируется. В зависимости от сложности загрязнения есть возможность установить нужное время, частоту и степень воздействия.

Качественная обработка деталей также зависит от исправности функционирования:

  • генератора частот – выступающего в качестве источника появления вибрации;
  • нагревательного элемента – поддерживающего постоянную температуру жидкости в 70 градусов.

Некоторые конструкции не предусматривают наличия последнего структурного компонента.

Область применения ультразвуковых ванн

Ультразвуковые ванные получили широкое применение во многих областях промышленности. Востребованность устройств обусловлена получением более действенного результата по сравнению с традиционными методами очистки.

Приборы активно эксплуатируются в следующих сферах:

  • медицине – для стерилизации хирургических и лабораторных инструментов;
  • ювелирном производстве – для очищения драгоценных металлов, потерявших привлекательность внешнего вида;
  • типографии и ремонте оргтехники – для промывки струйных элементов и печатных головок принтеров, плоттеров, МФУ;
  • машиностроении – для удаления загрязнений с крупногабаритных деталей и узлов;
  • химической промышленности – для ускорения реакционных процессов, при смешивании жидких растворов.

Сотрудники автосервисов используют ультразвуковую ванну при промывке инжекторов, карбюраторов, фильтров, форсунок. При ремонте компьютерной техники и мобильных телефонов такие приборы зарекомендовали себя как наиболее эффективные механизмы. Их применяют для удаления флюсовых наростов с мельчайших деталей. Целесообразно удалять налет со всех видов смесителей для ванной , металлических креплений к ним.

Преимущества применения

Если сравнивать с другими устройствами, схема ультразвуковой ванны, которая может быть составлена при условии знания базовых азов физики и электроники, имеет ряд преимуществ. Прибор достаточно прост в эксплуатации, для работы требуется просто наполнить емкость специальной жидкостью и можно начать процесс очистки.

Качественный эффект достигается за счет:

  • высокой степени устранения загрязнений даже в труднодоступных местах;
  • хороших показателей производительности – результат достигается через 2-3 мин нахождения детали в емкости;
  • отсутствия любых повреждений поверхностей по окончании процесса.

Очищение всех предметов осуществляется мягкими жидкими средствами, не имеющими в составе абразивных и агрессивных веществ. Поэтому целостность деталей остается невредимой.

Критерии выбора

Перед покупкой ультразвуковой ванны необходимо определиться с целями использования устройства. От этого будет зависеть не только объем емкости, но и цена прибора. Самые дорогие варианты для обработки крупных деталей могут быть оснащены системами автоматики и сенсорным управлением.

При выборе подходящего по функциям и характеристикам механизма следует учитывать наличие в конструкции нагревательного прибора. Он помогает достичь более качественного результата. При этом если в состав жидкости входит дезинфицирующие компоненты, необходимости в постоянной поддержке и нагревании температурных показателей нет. Также важно понять, каков будет размер изделий, требующих обработки. Чем крупнее элементы, тем больше должна быть емкость ванны.

Для удобства пользования можно приобрести ультразвуковой прибор, оснащенный таймером. Стоит такой вариант немного дороже, но позволяет контролировать и задавать определенное время на выполнении процедуры.

Стоит отметить: в процессе эксплуатации специалисты рекомендуют использовать специальные корзины, стаканы. При погружении это обеспечит надежную защиту емкости от механических повреждений.

Материалы для изготовления ультразвуковой ванны своими руками

Ультразвуковую ванну можно купить или собрать своими руками. Чтобы самостоятельно сконструировать устройство для очистки, необходимо определиться со списком материалов и тщательно изучить технологию изготовления, которая показана на многих видео в интернете. Для монтажа устройства понадобятся:

  • емкость или любой каркас из нержавеющей стали, служащий основой для погружения изделий;
  • небольшая трубка из прочной пластмассы или стекла;
  • нанос для подачи жидкости в тару;
  • магнит круглой формы (можно снять со старых динамиков);
  • катушка со стержнем из феррита;
  • керамический или фарфоровый сосуд;
  • трансформатор импульсного типа.

Также необходима жидкость для ультразвуковой ванны, которая в дальнейшем будет использоваться.

Технология изготовления

При наличии всех деталей и материалов можно приступать к процессу изготовления. Работа начинается с наматывания катушки на стеклянную или пластмассовую трубку. При этом ферритовый стержень должен свободно свисать, его не требуется жестко фиксировать. К концу стрежня крепится магнит. В результате работы получается конструкция магнитострикционного преобразователя или излучателя.

На дне керамического или фарфорового сосуда сверлятся отверстия. Они необходимы для вставки заранее изготовленного излучателя. После этого сосуд фиксируется в емкости. Далее необходимо прикрепить трубы для подачи и слива жидкости.

Стоит отметить: раствор для ультразвуковых ванн поступает лучше и быстрее при наличии встроенного насоса.

Импульсный трансформатор обеспечивает более эффективное функционирование прибора за счет поднятия напряжения. Прибор можно достать из старого телевизора или компьютера.

После сборки приступают к экспериментальному запуску устройства. В случае обнаружения неисправности могут быть устранены сразу. При этом нужно учитывать следующие правила:

  • перед запуском осуществить внешний осмотр прибора;
  • нельзя работать с агрегатом при отсутствии жидкости – это может привести к разрыву стрежня на куски;
  • запрещено трогать руками изделия, находящие в сосуде в процессе очищения.

Ультразвук требует крайне осторожно обращения при соблюдении правил электрической и пожарной безопасности.

Необходим для очень широкого спектра девайсов - отпугивателей мышей, комаров, собак. Или просто в качестве ультразвуковой стиральной машинки. Так-же с данным EPU можно ставить интересные опыты и эксперименты (товарищи добавляют: в том числе и с соседями:)). Может использоваться для сокращения времени травления и промывки печатных плат, уменьшения времени замачивания белья. Ускорение протекания химических процессов в жидкости, облучённой ультразвуком, происходит благодаря явлению кавитации — возникновению в жидкости множества пульсирующих пузырьков, заполненных паром, газом или их смесью и звукокапиллярному эффекту. Ниже представлена схема ультразвукового генератора переменной частоты, взятая из журнала "Радиоконструктор".

Основу схемы составляют два генератора импульсов прямоугольной формы и мостовой усилитель мощности. На логических элементах DD1.3, DD1.4 выполнен перестраиваемый генератор импульсов формы меандр ультразвуковой частоты. Его рабочая частота зависит от ёмкости конденсатора С3 и общего сопротивления резисторов R6, R4. Чем сопротивление этих резисторов больше, тем частота меньше. На элементах DD1.1, DD1.2 сделан НЧ генератор с рабочей частотой около 1 Гц. Оба генератора связаны между собой через резисторы R3, R4. Конденсатор С2 предназначен для того, чтобы частота высокочастотного генератора изменялась плавно. Если конденсатор С2 зашунтировать переключателем SA1, то частота высокочастотного генератора будет постоянной. На микросхеме DD2 и полевых транзисторах выполнен мостовой усилитель мощности импульсов. Инверторы микросхемы раскачивают двухтактные повторители на полевых транзисторах. Когда на выводах 3, 6 DD2 лог. О, то на выходах DD2.3, DD2.4 будет лог. 1. Соответственно, в этот момент времени будут открыты транзисторы VT1, VT4, a VT2, VT4 будут закрыты. Использование сигнала прямоугольной формы приводит к богатому гармониками акустическому излучению. В качестве излучателей ультразвука используются две высокочастотные динамические головки типа 2ГД-36-2500. Можно использовать и 6ГД-13 (6ГДВ-4-8), ЭГД-31 (5ГДВ-1-8) и другие аналогичные. При возможности, их желательно заменить мощным пьезокерамическим излучателем или магнитостриктором, который можно попробовать изготовить самостоятельно, намотав на ферритовом П-образном сердечнике от ТВС телевизора несколько десятков витков многожильного медного провода, а в качестве мембраны применить небольшую стальную пластину. Катушка должна быть размещена на массивной опоре. Р-канальные полевые транзисторы можно заменить на IRF5305, IRF9Z34S, IRF5210; п-канальные — IRF511, IRF541, IRF520, IRFZ44N, IRFZ48N. Транзисторы устанавливаются на радиаторы. Микросхемы можно заменить на 564ЛА7, CD4011A, К561ЛЕ5, КР1561ЛЕ5, CD4001B. Дроссель L1 — любой миниатюрный индуктивностью 220.... 1000 мкГн. Резисторы R7, R8 — самодельные проволочные. Переменный резистор СП3-30, СП3-3-33-32 или с выключателем питания СП2-33-20. Печатную качаем в архиве.

Настройка. Движок переменного резистора R5 устанавливается в среднее положение, контакты выключателя SA1 замыкаются, подбором ёмкости конденсатора С3 и сопротивления резистора R6 устанавливается частота генератора на DD1.3, DD1.4 около 30 кГц. Далее, контакты SA1 размыкаются и подбором сопротивлений резисторов R2, R3 и R4 следует установить девиацию ультразвуковой частоты от 24 кГц до 35...45 кГц. Делать её более широкой не следует, так как или работа устройства станет слышимой человеком, либо заметно возрастут потери на переключение полевых транзисторов, а эффективность излучателей звука упадёт. Срыв работы генератора на DD1.3, DD1.4 не допускается, так как это может привести к повреждению катушек динамических головок. Источник питания должен быть рассчитан на ток не менее 2 А. Напряжение питания может быть от 11 до 13 вольт.

Сегодня собрал такую схему ультразвукового излучателя - работает не очень, но! Немного пораскинув умом, пришел к выводу о необходимости повысить ёмкость С3 до 2200 пф, далее естественно была устранена ошибка в схеме - в элементе DD2.2 выводы 4 и 6 перепутаны. И о чудо - работает. Правда долго выдержать этот пронзительный звук, меняющийся в широком диапазоне не представляется возможным даже тем, кто находится и в других комнатах. Голова начинает даже не болеть, а её как будто в тиски жмёт, до тошноты противное состояние, выдержал секунд 30.

Ток потребления можно рассчитать исходя из сопротивления применяемого ультразвукового излучателя, закон Ома помнят думаю все. К примеру, у меня стоит на 16 Ом, приняв за КПД 100% оконечного каскада, что почти так и есть, получаем 750 мА при напряжении питания 12 В. Напряжение менять не стоит, иначе упадет мощность, да и смысл уменьшать? Свой ультразвуковой излучатель питаю от кренки на 12 В. При перепадах напряжения частота более менее стабильна получается. Диапазон выходных частот варьирует в широком пределе переменным резистором от слышимого спектра - до не слышимого, необходимо лишь правильно подобрать скважность импульсов для правильной работы схемы. Устройство собрал и испытал: ГУБЕРНАТОР.

С малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов. В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой "перезарядки". Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему "пробойник". Данная конструкция меня устраивала. Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

Хотелось бы сказать что всё это было сделано в качестве эксперимента!

И так для ЭМИ излучателя нам понадобится:
-высоковольтный модуль
-две батарейки на 1,5 вольта
-бокс для батареек
-корпус, я использую пластиковую бутылку на 0,5
-медная проволока диаметром 0,5-1,5 мм
-кнопка без фиксатора
-провода

Из инструментов нам понадобится:
-паяльник
-термо клей

И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки




Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса




Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:




Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:


С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:


Самый длинный провод вставляем через отверстие внутрь бутылки:


Припаиваем к нему оставшийся провод высоковольтника:


Располагаем высоковольтный модуль внутри бутылки:


Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:


Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:




Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём




укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:




Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:




Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:






Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа!

До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!

Приветствую. В этой статье я расскажу о том, как по несложным схемам изготавливается ультразвуковая ванна своими руками. Кроме того, вы узнаете о том, что собой представляет этот прибор, зачем он нужен и насколько он эффективен в работе.

Ультразвуковую ванну возможно сделать своими руками в домашних условиях. Она придет на помощь при очистке предметов от ржавчины, грязи и налета. Все что нам для этого нужно – это учитывать технологию производства прибора и не отступать от общих правил и рекомендаций. Ультразвуковое устройство позволяет в кратчайшие сроки эффективно удалить загрязнения на разнообразных деталях, узлах и инструментах. Также огромным преимуществом данного прибора является то, что им возможно очистить те изделия, для которых механический способ очистки категорически запрещен.

Общие сведения

Если еще сравнительно недавно, очистка ультразвуком была чем-то из разряда фантастики, то сегодня бытовые приборы, работающие по этому принципу, приобретаются за небольшие деньги в небезызвестном китайском онлайн магазине. Впрочем, несмотря на то, что цена прибора доступна многим, можно попробовать собрать его самостоятельно.

Уверен, тема статьи будет интересна не только тем читателям, которые любят что-либо собрать своими руками, но и тем людям, которые до сих пор не определились с тем, нужен им прибор для ультразвуковой очистки или нет.

Все, что нужно знать о УЗ-ваннах

В большинстве мастерских, занятых ремонтом ювелирных украшений, мобильных телефонов и прочей бытовой электроники наверняка есть ультразвуковая ванна, с помощью которой можно без особых усилий отмыть те или иные загрязнения.

В сравнении с механическим способом удаления загрязнений, применение ультразвуковых ванн обеспечивает следующие преимущества:

  • Быстрое удаление загрязнений без необходимости что-либо мыть своими руками;
  • Удаление грязи из труднодоступных мест (особенно актуально для печатных плат и ювелирных украшений со сложной конфигурацией;
  • Отсутствие механических повреждений после окончания чистки.

Сфера применения прибора распространяется на такие области, как:

  • Ювелирные и реставрационные мастерские;
  • Мастерские по ремонту бытовых электроприборов;
  • Химические лаборатории и медицинские учреждения, где есть необходимость в тщательной очистке инструмента;
  • Мастерские по ремонту автотранспортных средств, где есть необходимость в тщательной очистке отдельных механизмов, узлов в сборе, аппаратуры и т.п.

Ультразвуковые ванны (далее по тексту УЗ-ванны) работают по принципу кавитации звукового давления, которое образуется в жидкой среде под действием ультразвука. То есть, в жидкости образуется большое количество гравитационных воздушных пузырьков и при их лопании возникает эффект звукового давления.

Чтобы было еще понятнее, каждый небольшой пузырёк воздуха лопаясь, создает эффект микровзрыва. Большое количество микровзрывов, пропорциональное количеству пузырьков в ванне создает давление, достаточное для отшелушивания частиц грязи, ржавчины и всего того, от чего вы бы хотели те или иные предметы.

Конструкция УЗ-ванны состоит из следующих компонентов:

  • Металлическая ёмкость, изготовленная из нержавеющей ;

Сфера применения прибора, в первую очередь, определяется размерами металлической ванны. Например, для очистки печатных плат чаще всего используются приборы с объемом до 1 литра. Для других нужд применяются более вместительные ванны.

  • Электронный ультразвуковой генератор – служит источником вибраций;
  • Излучатель – преобразовывает электрические колебания в механические и передает их на стенки емкости;
  • Блок управления, с которого задаются параметры режимов и продолжительности очистки.

Что использовать в качестве моющего средства

Нужно понимать, что УЗ-ванна, сама по себе, не моет, а всего лишь усиливает действие применённого растворителя. Поэтому так важно правильно подобрать ту жидкость для ультразвуковой ванны, которая будет соответствовать типу загрязнения.

Ни в коем случае нельзя включать пустую или полупустую ванну. Уровень жидкости должен составлять не менее 2/3 от высоты борта емкости. При меньшем уровне напряжение на генераторе резко увеличивается и в результате может потребоваться ремонт прибора.

Производители ультразвуковых ванн рекомендуют наливать в емкость специальные жидкости, такие как Zestron FA+, Flux-off, Solins-us и т.п. На практике покупатели приборов используют самые разные средства, начиная с дистиллированной воды и заканчивая растворителем уайт-спирит.

Чтобы добиться максимально возможного качества очистки металлических и полимерных предметов от различных загрязнений, могу посоветовать следующие средства: дистиллированная вода, бензин «калоша», любые спиртосодержащие средства для мытья стекол, ацетон (только для металлических предметов).

Если предполагается отмывать металлические предметы от ржавчины, рекомендую в качестве моющей жидкости использовать водный раствор ортофосфорной кислоты или преобразователь ржавчины.

В инструкции прибора указано то, что применение легковоспламеняющихся веществ в качестве моющих жидкостей запрещено. Это объясняется тем, что металлическая ёмкость в процессе работы устройства нагревается. Для того, чтобы применять ацетон или бензин, советую устанавливать режим небольшой длительности, в течении которого ванна не успеет нагреться.

Как собрать ультразвуковую мойку самому

Чтобы собрать ультразвуковую ванну своими руками, помимо деталей, указанных на схеме, понадобится следующее:

К сведению – миска для столовых изготовлена из тонкой нержавейки и стоит не больше 100 руб.

  • Ванночка до литра из нержавеющей стали – чем легче, тем лучше;
  • Отрезок пластиковой трубы или другая конструкция – для использования в качестве подставки под емкость;
  • Блок питания на 12 В;

  • Ферритовый стержень – подойдет интегрированная антенна из радиоприемника;
  • Ультразвуковой излучатель – мощность 80 Вт
  • Эпоксидный клей.

Инструкция сборки следующая:

  • Делаем дроссель – на ферритовый стержень наматываем 20 витков мягкой медной проволоки с диаметром 1-1,5 мм;

  • Ультразвуковой излучатель приклеиваем к дну металлической ёмкости, располагая строго по центру;
  • В соответствии с монтажной схемой, паяем плату;
  • В соответствии со схемой, собираем цепь;

  • Блок питания (выходной трансформатор) подключаем к обмотке на 5 В.

Как проверить эффективность ванны?

В качестве теста можно что-нибудь очистить от грязи, но это займёт много времени. Для быстрого теста эффективности опустите в ванночку кусок тонкой фольги. Если прибор собран правильно, фольга на местах сгиба будет буквально растворяться.

Заключение

Теперь вы знаете, что такое УЗ ванна, как она работает и для чего ее можно применить. Кроме того, мы рассмотрели простую монтажную схему, по которой можно собрать рабочий прибор для бытовой эксплуатации.



Читайте также: