Схема для измерения индуктивности на atmega8. RLC и ESR метр, или прибор для измерения конденсаторов, индуктивностей и низкоомных резисторов

В последнее время выход из стоя электролитических конденсаторов стал одной из основных причин поломок радиоаппаратуры. Но для правильной диагностики не всегда достаточно иметь только измеритель емкости, поэтому сегодня мы поговорим об еще одном параметре - ESR.
Что это, на что влияет и чем измеряют, я попробую рассказать в этом обзоре.

Для начала скажу, что этот обзор будет кардинально отличаться от предыдущего, хотя оба этих обзора об измерительных приборах радиолюбителя.
1. В этот раз не конструктор, а скорее «полуфабрикат»
2. Паять в этом обзоре я ничего не буду.
3. Схемы в этом обзоре также не будет, думаю что к концу обзора будет понятно, почему.
4. Данный прибор очень узконаправленный, в отличии от предыдущего «многостаночника».
5. Если о предыдущем приборе знало очень много людей, то этот почти никому неизвестен.
6. Обзор будет маленьким

Для начала, как всегда, упаковка.

К упаковке прибора претензий не возникло, простенько и компактно.

Комплектация совсем спартанская, в комплекте только сам прибор и инструкция, щупы и батарейка в комплект не входят.

Инструкция также не блещет информативностью, общие фразы и картинки.

Технические характеристики прибора, указанные в инструкции.

Ну и более понятным языком.
Сопротивление
Диапазон - 0,01 - 20 Ом
Точность - 1% + 2 знака.

Эквивалентное последовательное сопротивление (ESR)
Диапазон - 0,01 - 20 Ом, работает в диапазоне конденсаторов от 0.1мкФ
Точность - 2% + 2 знака

Емкость
Диапазон - 0,1мкФ - 1000мкФ (3-1000 мкФ измеряются на частоте 3КГц, 0.1-3мкФ - 72КГц)
Точность - зависит от частоты измерения, но составляет около 2% ± 10 знаков

Индуктивность
Диапазон - 0-60 мкГн на частоте 72КГц и 0-1200 мкГн на частоте 3КГц.
Точность - 2% + 2 знака.

Для начала я расскажу что же это такое - ESR.
Многие довольно часто слышали слово - конденсатор, а некоторые даже их видели:)
Если не видели, то на фото ниже наиболее часто встречающиеся в технике представители.

В реальной жизни эквивалентная схема конденсатора выглядит примерно так, как показано на рисунке ниже.
На картинке показаны -
C - эквивалентная емкость, r - сопротивление утечки, R - эквивалентное последовательное сопротивление, L - эквивалентная индуктивность.

А если упрощенно, то
Эквивалентная емкость - это конденсатор в «чистом» виде, т.е. без недостатков.
Сопротивление утечки - это то сопротивление, которое разряжает конденсатор помимо внешних цепей. Если провести аналогию с бочкой воды, то это естественное испарение. Оно может быть больше, может быть меньше, но оно будет всегда.
Эквивалентная индуктивность - Можно сказать что это дроссель, включенный последовательно с конденсатором. Например это обкладки конденсатора свернутые в рулон. Этот параметр мешает конденсатору при работе на высоких частотах и чем выше частота, тем больше влияние.
Эквивалентное последовательное сопротивление, ESR - Вот и тот параметр, который мы и рассматриваем.
Его можно представить как резистор, включенный последовательно с идеальным конденсатором.
Это сопротивление выводов, обкладок, физические ограничения и т.д.
В самых дешевых конденсаторах это сопротивление обычно выше, в более дорогих LowESR ниже, а ведь есть еще Ultra LowESR.
А если просто (но очень утрированно), то это все равно, что набирать воду в бочку через короткий и толстый шланг или через тонкий и длинный. Заправится бочка в любом случае, но чем тоньше шланг, тем это будет происходить дольше и с большими потерями во времени.

Из-за этого сопротивления невозможно конденсатор мгновенно разрядить или зарядить, кроме того при работе на высоких частотах именно это сопротивление греет конденсатор.
Но самое плохое то, что обычный измеритель емкости его не измеряет.
У меня часто были случаи, когда при измерении плохого конденсатора прибор показывал нормальную емкость (и даже выше), но устройство не работало. При измерении ESR-метром сразу становилось понятно, что внутреннее сопротивление у него очень высокое и работать нормально он не может (по крайней мере там, где стоял до этого).
Некоторые наверняка видели вспухшие конденсаторы. Если отсечь случаи, когда конденсаторы пухли просто лежа на полке, то остальное будет являться следствием повышения внутреннего сопротивления. При работе конденсатора постепенно увеличивается внутреннее сопротивление, происходит это от неправильного режима работы или от перегрева.
Чем больше внутреннее сопротивление, тем больше начинает греться конденсатор изнутри, чем больше нагрев изнутри, тем больше растет сопротивление. В итоге электролит начинает «кипеть» и из-за повышения внутреннего давления конденсатор вспухает.

Но вспухает конденсатор не всегда, иногда на вид он абсолютно нормальный, емкость в порядке, а нормально не работает.
Подключаешь его к ESR метру, а у него вместо привычных 20-30мОм уже 1-2 Ома.
Я пользуюсь в работе самодельным ESR метром, собранным много лет назад по схеме с форума ProRadio, автор конструкции - Go.
Этот ESR метр попадается в моих обзора довольно часто и меня часто спрашивают о нем, но когда я увидел в новых поступлениях магазина уже готовый прибор, то решил заказать его для пробы.
Еще подогревало интерес то, что информации по этому прибору я нигде не нашел, ну тем интереснее:)

Внешне прибор выглядит как «полуфабрикат», т.е. собранная конструкция, но без корпуса.
Правда для удобства производитель установил всю эту конструкцию на такие вот пластиковые «ножки», даже гаечки пластиковые:)

С правого торца прибора расположены клеммы для подключения измеряемого элемента.
К сожалению схема подключения двухпроводная, а значит что чем длиннее будут провода щупов (если их использовать) тем больше будет погрешность показаний.
В более правильных конструкциях используется четырехпроводное подключение, по одной паре конденсатор заряжается/разряжается, по другой происходит измерение напряжения на конденсаторе. в таком варианте провода можно сделать хоть метр длиной, глобальной разницы в показаниях не будет.
Также рядом с клеммами находятся два контакта печатной платы, они используются при калибровке прибора (это я понял уже потом).

Снизу предусмотрено место для установки батареи питания типа 6F22 9 Вольт (Крона).

Прибор также может питаться и от внешнего источника питания, подключаемого посредством разъема MicroUSB. при подключении питания к этому разъему батарея отключается автоматически. при частом использовании я бы советовал питать прибор от USB разъема, так как батареи разражаются довольно ощутимо.
На фото также видно, что стяжка, при помощи которой крепится батарея, многоразовая. Замок стяжки имеет язычок, при нажатии на который ее можно открыть.

В собранном виде конструкция выглядит как то так.

Включается и управляется прибор всего одной кнопкой.
Включение - нажатие дольше 1 сек.
Нажатие в рабочем режиме переключает прибор между измерениями L и С-ESR.
Выключение - нажатие кнопки более чем 2 секунды.

При включении прибора высвечивается сначала название и версия прошивки, затем идет надпись, предупреждающая о том, что конденсаторы надо обязательно разрядить перед проверкой.
При удержании кнопки более двух секунд высвечивается надпись - Выключение питания и при отпускании кнопки прибор отключается.

Как я выше писал, прибор имеет два рабочих режима.
1. измерение индуктивности
2. измерение емкости, сопротивления (или ESR).
В обоих режима на экране отображается напряжение питания прибора.

Естественно посмотрим что из себя представляет начинка этого прибора.
На вид она заметно сложнее чем у предыдущего тестера транзисторов, что косвенно говорит либо о непродуманности схемы либо о лучших характеристиках, мне кажется что в данном случае скорее второй вариант.

Ну дисплей особо описывать смысла нет, классический 1602 вариант. Единственно что удивило - черный цвет текстолита.

Общее фото печатной платы я сделал в двух вариантах, со вспышкой и без, вообще прибор очень не хотел фотографироваться, мешая мне всеми возможными способами, потому заранее приношу извинение за качество.
На всякий случай напоминаю, что все фото в моих обзорах кликабельны.



«сердцем» прибора является микроконтроллер 12le5a08s2, информации по конкретно этому контроллеру я не нашел, но в даташите другой его версии проскакивала информация что он собран на ядре 8051.

Измерительная часть содержит довольно много элементов, кстати заявлено что процессор имеет 12 бит АЦП, который используется для измерения. Вообще такая разрядность весьма неплохая, скорее интересно насколько это реально.
Изначально думал начертить схему всего этого «безобразия», но потом понял, что особого смысла это не имеет, так как характеристики прибора в плане диапазона измерения не очень большие. Но если кому интересно, то можно попробовать перечертить.

Также в измерительной схеме задействован операционный усилитель, как по мне довольно неплохой, я такой использовал в усилителе сигнала с токового шунта электронной нагрузки.

Судя по всему это узел переключения питания между батареей и USB разъемом.

Снизу платы почти ничего интересного, кроме кнопки компонентов никаких нет:(

Но я нашел интересное даже на пустой печатной плате:)))
Дело в том, что когда я получил прибор и игрался с ним, то категорически не мог заставить его отображать емкость конденсатора выше 680мкФ, он упорно показывал OL и все.
Осматривая плату я не мог не заметить три пары контактов для подключения кнопок (судя по маркировке).
Сначала я ткнул key2, на что получил на экране - калибровка нуля (вольный перевод) - ОК.
Ха, думаю, ну щаззз мы тебя.
А вот и нет, калибровка заняла у меня уйму времени, так как из-за редкости прибора информации по нему нет, вообще. Единственное упоминание со словом калибровка было .

Замыкание других пар контактов выводит на экран значения констант (судя по всему).
причем были еще варианты, с другими буквами, а также иногда при замыкании key3 проскакивала надпись - Сохранено ОК (на англ ессно).

Но вернемся к калибровке.
Прибор сопротивлялся всем своими силами.
Для начала я попробовал коротнуть клеммы пинцетом и калибровать так, но прибор в итоге показывал правильную емкость и отрицательное сопротивление у конденсаторов.
После этого я коротнул два тестовых пятачка на плате, прибор стал показывать корректное сопротивление, но диапазон измерения емкости сузился до 220-330 мкФ.
И уже после долгих поисков в инете я наткнулся на фразу (ссылка есть чуть выше) - Use 3cm thick copper wire for short circuit to clear
В переводе это означало - используйте медный провод толщиной 3см. я подумал что толщина в 3см это как то круто и скорее всего имелось в виду 3см длины.
Отрезал кусочек провода длиной около 3см и коротнул патчки на плате, стало работать гораздо лучше, но все равно не так.
Взял провод подлиннее раза в два и повторил операцию. После этого прибор стал работать уже вполне нормально и дальнейшие тесты я проводил уже после этой калибровки.

Для начала я подобрал разных компонентов, при помощи которых буду проверять как работает прибор.
На фото они уложены в соответствии с порядком тестирования, только дроссели лежат наоборот.
Все компоненты проверялись от меньшего номинала к большему.

Перед тестами я посмотрел осциллографом что выдает прибор на свои измерительные клеммы.
Судя по показаниям осциллографа частота установлена примерно на 72КГц.

В плане измерения индуктивности показания вполне сошлись с указанными на компонентах.
1. индуктивность 22мкГн
2. индуктивность 150мкГн
Кстати, в процессе калибровки я заметил, что никакие манипуляции не влияли на точность измерения емкости и индуктивности, а отражались только на точности измерения сопротивления.

С индуктивностью 150мкГн форма сигнала на клеммах выглядела так

С конденсаторами небольшой емкости также не возникло проблем.
1. 100нФ 1%
2. 0.39025 мкФ 1%

Форма сигнала при измерении конденсатора 0.39025 мкФ

Дальше пошли электролиты.
1. 4.7мкФ 63В
2. 10мкФ 450В
3. 470мкФ 100 Вольт
4. 470мкФ 25 В lowESR
Отдельно скажу насчет конденсатора 10мкФ 450 Вольт. Меня очень удивили показания и это не дефект конкретного элемента, так как конденсаторы новые и у меня их два одинаковых. показания также были одинаковые у обоих и другие приборы показывали именно емкость около 10мкФ. мало того, даже на этом приборе пару раз проскочили показания со значением около 10мкФ. почему так, мне непонятно.

1. 680мкФ 25 Вольт низкоимпедансный
2. 680мкФ 25 Вольт lowESR.
3. 1000мкФ 35 Вольт обычный Samwha.
4. 1000мкФ 35 Вольт Samwha RD серия.

Форма сигнала на контактах при тестировании обычного 1000мкФ 35 Вольт Samwha.
По идее, при измерении емких электролитов, частота должна была упасть до 3КГц, но на осциллограмме явно видно, что частота не менялась в процессе всех тестов и составляла около 72КГц.

1000мкФ 35 Вольт Samwha RD серии иногда выдавал и такой результат, проявлялось это при плохом контакте выводов с измерительными клеммами.

Уже после того как сделал групповое фото, измерил и сложил детали по своим местам я вспомнил, что забыл измерить сопротивление резисторов.
Для измерения я взял пару резисторов
1. 0.1 Ома 1%
2. 0.47 Ома 1%
Сопротивление второго резистора несколько завышено и явно вылазит за предел 1%, скорее даже ближе к 10%. но я думаю что это скорее сказывается то, что измерение проходит на переменном токе и влияет индуктивность проволочного резистора, так как мелкий резистор на 2.4 Ома показал сопротивление 2.38 Ома.

Когда искал информацию по прибору, то пару раз натыкался на фото этого прибора, где показано одновременное измерение с разными частотами, но мой прибор такое не выводит, опять же непонятно почему:(
То ли другая версия, то ли еще что, но разница есть. У меня вообще сложилось впечатление, что измеряет он только на частоте 72КГц.
Высокая частота измерения это хорошо, но всегда удобно иметь альтернативу.

Резюме
Плюсы
В работе прибор показал довольно неплохую точность (правда после калибровки)
Если не учитывать то, что мне пришлось его калибровать, то можно сказать что конструкция готова к работе «из коробки», но допускаю что это мне так «повезло».
Двойное питание.

Минусы
Полное отсутствие информации по калибровке прибора
Узкий диапазон измерения
У меня прибор нормально начал работать только после калибровки.

Мое мнение. Если честно, то у меня создалось стойкое двоякое впечатление о приборе. С одной стороны я получил вполне неплохие результаты, а с другой я получил больше вопросов чем ответов.
Например я так на 100% и не понял как его правильно калибровать, также не понял почему мой конденсатор на 10мкФ отображается как 2.3, ну и кроме того непонятно, почему измерение проходит только на 72КГц.
Я даже не знаю, рекомендовать его или нет. Если паять совсем не хочется, то можно использовать этот или транзистор тестер из прошлого обзора, а если хочется лучших характеристик (в основном в сторону расширения диапазона) и не нужно измерять индуктивности, то можно собрать C-ESR метр от Go.
Очень расстроил верхний диапазон измерения емкости в 1000мкФ, хотя я спокойно измерял и 2200 мкФ, но точность прибора падала, он начинал явно завышать показания емкости.

В общем на этом пока все, очень буду рад любой информации по прибору и с удовольствием добавлю ее в обзор. Допускаю что у кого нибудь он тоже есть, хотя и очень маловероятно, так как я не нашел по нему ничего, хотя часто все приборы являются повторением каких то уже известных конструкций.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +45 Добавить в избранное Обзор понравился +48 +115

Этот проект - простой LC-метр на основе популярного дешёвого микроконтроллера PIC16F682A. Он похож на другую, недавно опубликованную тут . Обычно такие функции трудно найти в дешевых коммерческих цифровых мультиметрах. И если некоторые ещё могут мерять ёмкость, то индуктивность точно нет. А значит придётся собрать такой приборчик своими руками, тем более ничего сложного в схеме нет. В нем используется PIC контроллер и все нужные файлы плат и HEX файлы для программирования микроконтроллера есть по ссылке .

Вот схема измерителя LC

Дроссель на 82uH. Общее потребление (с подсветкой) 30 мА. Резистор R11 ограничивает подсветку и должен быть рассчитан в соответствии с фактическим токопотреблением ЖК-модуля.

В измеритель нужно 9 В батарею питания. Поэтому тут использован стабилизатор напряжения 78L05. Также добавлен автоматический режим сна схемы. За время в режиме работы отвечает значение конденсатора C10 на 680nF. Это время в данном случае 10 минут. Полевой MOSFET Q2 может быть заменен на BS170.

В процессе настройки, следующей целью было сделать потребляемый ток максимально низким. С увеличением значения R11 до 1,2 ком, которые управляют подсветкой, общий ток устройства был снижен до 12 мА. Можно было уменьшить еще больше, но видимость очень страдает.

Результат работы собранного устройства

Эти фотографии показывают LC метр в действии. На первой конденсатор 1nF/1%, а на второй дроссель 22uH/10%. Прибор очень чувствителен - когда ставим щупы, то уже есть 3-5 пФ на дисплее, но это устраняется при калибровке кнопкой. Конечно можно купить готовый аналогичный по функциям измеритель, но конструкция его столь проста, что совсем не проблема спаять и самому.

Обсудить статью ИЗМЕРИТЕЛЬ LC

Я уверен, что этот проект не является новым, но это собственная разработка и хочу, чтобы этот проект так, же был известен и полезен.

Схема LC метра на ATmega8 достаточно проста. Осциллятор является классическим и выполнен на операционном усилителе LM311. Основная цель, которую я преследовал при создании данного LC метра — сделать его не дорогим и доступным для сборки каждым радиолюбителем.

Принципиальная схема измерителя емкости и индукции

Характеристики LC-метра:

  • Измерение емкости конденсаторов: 1пФ — 0,3мкФ.
  • Измерение индуктивности катушек: 1мкГн-0,5мГн.
  • Вывод информации на ЖК индикатор 1×6 или 2×16 символов в зависимости от выбранного программного обеспечения

Для данного прибора я разработал программное обеспечение, позволяющее использовать тот индикатор, который есть в распоряжении у радиолюбителя либо 1х16 символьный ЖК-дисплей, либо 2х 16 символов.

Тесты с обоих дисплеев, дали отличные результаты. При использовании дисплея 2х16 символов в верхней строке отображается режим измерения (Cap – емкость, Ind – ) и частота генератора, в нижней же строке результат измерения. На дисплее 1х16 символов слева отображается результат измерения, а справа частота работы генератора.

Однако, чтобы поместить на одну строку символов измеренное значение и частоту, я сократил разрешение дисплея. Это ни как не сказывается на точность измерения, только чисто визуально.

Как и в других известных вариантах, которые основаны на той же универсальной схеме, я добавил в LC-метр кнопку калибровки. Калибровка проводится при помощи эталонного конденсатора емкостью 1000пФ с отклонением 1%.

При нажатии кнопки калибровки отображается следующее:

Измерения, проведенные с помощью данного прибора на удивление точны, и точность во многом зависит от точности стандартного конденсатора, который вставляется в цепь, когда вы нажимаете кнопку калибровки. Метод калибровки устройства заключается всего лишь в измерении емкости эталонного конденсатора и автоматической записи его значения в память микроконтроллера.

Если вы не знаете точное значение, можете откалибровать прибор, изменяя значения измерений шаг за шагом до получения наиболее точного значения конденсатора. Для подобной калибровки имеются две кнопки, обратите внимание, на схеме они обозначены как «UP» и «DOWN». Нажимая их можно добиться корректировки емкости калибровочного конденсатора. Затем данное значение автоматически записывается в память.

Перед каждым замером емкости необходимо сбросить предыдущие показания. Сброс на ноль происходит при нажатии «CAL».

Для сброса в режиме индуктивности, необходимо сначала замкнуть выводы входа, а затем нажать «CAL».

Весь монтаж разработан с учетом свободной доступности радиодеталей и с целью достижения компактности устройства. Размер платы не превышают размеров ЖК-дисплея. Я использовал как дискретные компоненты, так и компоненты поверхностного монтажа. Реле с рабочим напряжением 5В. Кварцевый резонатор — 8MHz.

Этот точный LC метр построен на базе недорогих компонентов, которые очень легко найти в радиомагазинах. Диапазон измерителя LC-метра достаточно широк и подходит для измерения даже очень низких значения емкости и индуктивности.

Печатная плата - рисунок

Индуктивности - диапазоны измерений:

  • 10nH - 1000nH
  • 1uH - 1000uH
  • 1mH - 100mH

Диапазоны измерения емкости:

  • 0.1pF - 1000pF
  • 1nF - 900nF

Большим плюсом устройства является автоматическая калибровка при включении питания, поэтому исключена ошибка в калибровке, что присуще некоторым аналогичным , особенно аналоговых. При необходимости, можно выполнить повторную калибровку в любой момент, нажатием кнопки reset. В обем данный LC метр полностью автоматический. Прошивку МК PIC16F628 .

Компоненты прибора

Слишком точные компоненты являются необязательными, за исключением одного (или более) конденсаторов, которые используются для калибровки измерителя. Два 1000 пФ конденсатора по входу должны быть достаточно хорошего качества. Пенополистирол является более предпочтительным. Избегайте керамических конденсаторы, ведь некоторые из них могут иметь большие потери.

Два конденсатора по 10 мкФ в генераторе должен быть танталовые (у них низкое последовательное сопротивление и индуктивность). Кварцевый резонатор на 4 МГц должен быть строго 4.000 МГц, а не что-то приближенное к этому значению. Каждый 1% ошибки в частоте кварца добавляет 2% ошибок при измерении значения индуктивности. Реле должно обеспечить около 30 мА тока срабатывания. Резистором R5 выставляется контраст ЖК дисплея LC метра. Питается прибор от обычной батарейки Крона, так как дальше напряжение стабилизируется микросхемой 7805 .

Буквой C. Вот отсюда и пошло название прибора. Или иными словами, LC-метр – это прибор для измерения значений индуктивности и емкости.

На фото он выглядит примерно вот так:

LC-метр на вид напоминает . Он также имеет два щупа для измерения значений катушки индуктивности и емкости. Выводы конденсаторов можно пихать либо в отверстия для конденсаторов, там где написано Cx, а можно и напрямую к щупам. Проще и быстрее все-таки подсоединять к щупам. Индуктивность и емкость измеряются очень просто, выставляем предел измерения, покрутив крутилку, и смотрим обозначение на дисплее LC-метра . Как говорится, даже маленький ребенок без труда освоит эту “игрушку”.

Как измерить емкость LC-метром

Вот у нас четыре испытуемых конденсатора. Трое из них – неполярные, а один – полярный (черный с серой полосой)


Погнали


Давайте разберемся с обозначениями на конденсаторе. 0,022 мкФ – это его емкость, то есть 0,022 микрофарад. Далее +-5% – это его погрешность. То есть измеряемое значение может быть на плюс или минус 5% больше или меньше. Если больше или меньше 5 % – значит конденсатор у нас плохой, и его желательно не использовать. Пять процентов от 0,022 – это 0,001. Следовательно, конденсатор можно считать вполне рабочим, если его измеряемая емкость будет находится в диапазоне от 0,021 до 0,023. У нас значение 0,025. Если даже учесть погрешность измерения прибора – это не есть хорошо. Выкидываем его куда подальше. Ах да, обратите внимание на вольты, которые пишутся после процентов. Там написано 200 Вольт – это значит, что он рассчитан на напряжение до 200 Вольт. Если у него в схеме будет на выводах напряжение больше 200 Вольт, то он, скорее всего, выйдет из строя.

Если, например, на конденсаторе указано 220 В, то это – максимальное значение напряжения . С учётом того, что в сетях переменного тока указываются , то такой конденсатор не подойдёт для применения при напряжении сети 220 В, так как максимальное значение напряжения в этой сети = 220 В х 1,4 (то есть корень из 2) = 310 В. Конденсатор надо выбрать такой, чтобы он был рассчитан на напряжение намного превышающее 310 Вольт.

Следующий советский конденсатор


0,47 микрофарад. Погрешность +-10 %. Это значит 0,047 в ту и другую сторону. Его можно считать нормальным в диапазоне 0,423-0,517микроФарад. На LC-метре 0,489 – следовательно, он вполне работоспособный.

Следующий импортный конденсатор


На нем написано,22 – это значит 0,22 микрофарад. 160 – это предел напряжения. Вполне нормальный конденсатор.

И следующий электролитический или, как его называют радиолюбители, электролит. 2,2 микрофарада на 50 Вольт.



Все ОК!

Как измерить индуктивность LC-метром

Давайте замеряем индуктивность катушки индуктивности . Берем катушку и цепляемся к ее выводам. 0,029 миллигенри или 29 микрогенри.


Таким же образом можно проверить другие катушки индуктивности.

Где купить LC-метр

В настоящее время прогресс дошел до того, что можно купить универсальный R/L/C/Transistor-metr , который умеет замерять почти все параметры радиоэлектронных компонентов


Ну для эстетов все таки есть нормальные LC-метры, которые в один клик можно приобрести с Китая в интернет-магазине Алиэкспресс;-)

Вот страничка на LC-метры.

Вывод

Катушки индуктивности и конденсаторы – незаменимая вещь в электронике и электротехнике. Очень важно знать их параметры, потому как малейшее отклонение параметра от значения написанного на них может сильно изменить работу схемы, особенно это касается приемопередающей аппаратуры. Измеряйте, измеряйте и еще раз измеряйте!



Читайте также: