Прибор для измерения емкости конденсаторов. ESR метр своими руками — измеритель емкости конденсаторов

Каждому, кто регулярно занимается ремонтом электронной техники, известно, какой процент неисправностей выпадает на долю дефектных электролитических конденсаторов. При этом если существенную потерю емкости удается диагностировать при помощи обычного мультиметра, то такой весьма характерный дефект как возрастание эквивалентного последовательного сопротивления (ЭПС, англ. ESR) обнаружить без специальных устройств принципиально невозможно.

Долгое время при проведении ремонтных работ мне удавалось обходиться без специализированных приборов для проверки конденсаторов путем подстановки параллельно «подозреваемым» конденсаторам заведомо исправных, в звуковой аппаратуре использовать проверку тракта прохождения сигнала на слух при помощи наушников, а также использовать методы косвенного дефектирования, основанные на личном опыте, накопленной статистике и профессиональной интуиции. Когда же пришлось приобщиться к массовому ремонту компьютерной техники, в которой на совести электролитических конденсаторов оказывается добрая половина всех неисправностей, необходимость контроля их ЭПС стала без преувеличения стратегической задачей. Существенным обстоятельством явился также тот факт, что в процессе ремонта неисправные конденсаторы очень часто приходится заменять не новыми, а демонтированными из других устройств, и их исправность совсем не гарантирована. Поэтому неизбежно наступил момент, когда пришлось всерьез задуматься о том, чтобы разрешить эту проблему обзаведшись, наконец, ЭПС-метром. Поскольку о покупке подобного прибора по ряду причин речь заведомо не шла, напрашивался однозначный выход – собрать его самостоятельно.

Анализ схемотехнических решений построения ЭПС-метров, имеющихся на просторах Сети, показал, что спектр подобных устройств чрезвычайно широк. Они отличаются функциональностью, напряжением питания, применяемой элементной базой, частотой генерируемых сигналов, наличием/отсутствием моточных элементов, формой отображения результатов измерений и т.п.

Основными критериями выбора схемы являлись ее простота, низкое напряжение питания и минимальное количество моточных узлов.

С учетом всей совокупности факторов было принято решение повторить схему Ю. Куракина, опубликованную в статье из журнала «Радио» (2008 г., №7, с.26-27). Ее отличает целый ряд положительных особенностей: предельная простота, отсутствие высокочастотных трансформаторов, малый потребляемый ток, возможность питания от одного гальванического элемента, низкая частота работы генератора.

Детали и конструкция. Собранный на макете прибор заработал сразу и после нескольких дней практических экспериментов со схемой было принято решение о его окончательной конструкции: прибор должен быть предельно компактным и представлять собой нечто вроде тестера, позволяющего максимально показательно отображать результаты измерений.

С этой целью в качестве измерительной головки был использован стрелочный индикатор типа М68501 от магниторадиолы «Сириус-324 пано» с током полного отклонения 250 мкА и оригинальной шкалой, отградуированной в децибелах, который оказался под рукой. Позднее в Сети мною было обнаружены сходные решения с применением магнитофонных индикаторов уровня в исполнении других авторов, что подтвердило правильность принятого решения. В качестве корпуса прибора был использован корпус от неисправного зарядного устройства для ноутбука LG DSA-0421S-12, идеально подходящий по габаритам и имеющий, в отличие от многих своих собратьев, легкоразборный корпус, скрепляющийся шурупами.

В устройстве использованы исключительно общедоступные и широкораспространенные радиоэлементы, имеющиеся в хозяйстве любого радиолюбителя. Итоговая схема полностью идентична авторской, исключение составляют лишь номиналы некоторых резисторов. Сопротивление резистора R2 в идеале должно составлять 470 кОм (в авторском варианте – 1МОм, хотя при этом примерно половина хода движка все равно не используется), но резистора такого номинала, имеющего необходимые габариты, у меня не нашлось. Однако этот факт позволил доработать резистор R2 таким образом, чтобы он одновременно являлся и выключателем питания при повороте его оси в одно из крайних положений. Для этого достаточно соскрести острием ножа часть резистивного слоя у одного из крайних контактов «подковки» резистора, по которой скользит его средний контакт, на участке длиной примерно 3…4 мм.

Номинал резистора R5 подбирается исходя из тока полного отклонения используемого индикатора таким образом, чтобы даже при глубоком разряде элемента питания ЭПС-метр сохранял свою работоспособность.

Тип применяемых в схеме диодов и транзисторов абсолютно некритичен, поэтому предпочтение было отдано элементам, имеющим минимальные габариты. Гораздо более важен тип применяемых конденсаторов – они по возможности должны быть максимально термостабильны. В качестве С1…С3 были использованы импортные конденсаторы, которые удалось отыскать в плате от неисправного ИБП компьютера, обладающие очень малым ТКЕ и имеющие гораздо меньшие габариты в сравнении с отечественными К73-17.

Дроссель L1 выполнен на ферритовом кольце с магнитной проницаемостью 2000НМ, имеющем размеры 10×6×4,6 мм. Для частоты генерации 16 кГц необходимо 42 витка провода ПЭВ-2 диаметром 0,5 мм (длина проводника для намотки составляет 70 см) при индуктивности дросселя 2,3 мГн. Разумеется, можно использовать любой другой дроссель с индуктивностью 2…3,5 мГн, что будет соответствовать частотному диапазону 16…12 кГц, рекомендованному автором конструкции. У меня при изготовлении дросселя была возможность воспользоваться осциллографом и измерителем индуктивности, поэтому необходимое количество витков я подобрал экспериментальным путем исключительно из соображений вывести генератор точно на частоту 16 кГц, хотя практической необходимости в этом, конечно же, не было.

Щупы ЭПС-метра выполнены несъемными – отсутствие разъемных соединений не только упрощает конструкцию, но и делает ее более надежной, устраняя потенциальную возможность нарушения контактов в низкоомной измерительной цепи.

Печатная плата устройства имеет габариты 27×28 мм, ее чертеж в формате.LAY6 можно скачать по ссылке https://yadi.sk/d/CceJc_CG3FC6wg . Шаг сетки – 1,27 мм.

Компоновка элементов внутри готового устройства приведена на фото.

Результаты испытаний. Отличительной особенностью примененного в устройстве индикатора явилось то, что диапазон измерения ЭПС составил от 0 до 5 Ом. При проверке конденсаторов значительной емкости (100 мкФ и более), наиболее характерных для фильтров цепей питания материнских плат, блоков питания компьютеров и телевизоров, зарядных устройств ноутбуков, преобразователей сетевого оборудования (коммутаторов, маршрутизаторов, точек доступа) и их выносных адаптеров этот диапазон чрезвычайно удобен, поскольку шкала прибора является максимально растянутой. На основании усредненных экспериментальных данных для ЭПС электролитических конденсаторов различной емкости, приведенных в таблице, отображение результатов измерений оказывается очень наглядным: конденсатор можно считать исправным лишь в том случае, если стрелка индикатора при измерении располагается в красном секторе шкалы, соответствующем положительным значениям децибелов. Если стрелка располагается левее (в черном секторе), конденсатор из указанного выше диапазона емкостей является неисправным.

Разумеется, прибором можно тестировать и конденсаторы малой емкости (примерно от 2,2 мкФ), при этом показания прибора будут находиться в пределах черного сектора шкалы, соответствующего отрицательным значениям децибелов. У меня получилось примерно следующее соответствие ЭПС заведомо исправных конденсаторов из стандартного ряда емкостей градуировке шкалы прибора в децибелах:

Прежде всего, эту конструкцию следует рекомендовать начинающим радиолюбителям, еще не имеющим достаточного опыта в конструировании радиоаппаратуры, но осваивающим азы ремонта электронной техники. Низкая цена и высокая повторяемость данного ЭПС-метра выгодно отличают его от более дорогих промышленных устройств аналогичного назначения.

Основными достоинствами ЭПС-метра можно считать следующие:

— чрезвычайная простота схемы и доступность элементной базы для ее практической реализации при сохранении достаточной функциональности устройства и его компактности, отсутствие необходимости в высокочувствительном регистрирующем приборе;

— отсутствие необходимости в наладке, требующей наличия специальных измерительных приборов (осциллографа, частотомера);

— низкое напряжение питания и, соответственно, дешевизна его источника (не требуется дорогостоящая и малоемкая «Крона»). Устройство сохраняет свою работоспособность при разряде источника даже до 50% его номинального напряжения, то есть имеется возможность использовать для его питания элементы, которые уже не способны нормально функционировать в других устройствах (пультах ДУ, часах, фотоаппаратах, калькуляторах и т.п.);

— низкий ток потребления – около 380 мкА в момент измерения (зависит от используемой измерительной головки) и 125 мкА в режиме ожидания, что существенно продлевает срок эксплуатации источника питания;

— минимальное количество и предельная простота моточных изделий – в качестве L1 можно использовать любой подходящий дроссель или легко изготовить его самостоятельно из подручных материалов;

— сравнительно низкая частота работы генератора и возможность ручной установки нуля, позволяющие использовать щупы с проводами практически любой разумной длины и произвольного сечения. Это преимущество является неоспоримым в сравнении с универсальными цифровыми тестерами элементов, использующими для подключения проверяемых конденсаторов ZIF-панель с глубоким расположением контактов;

— визуальная наглядность отображения результатов тестирования, позволяющая быстро оценить пригодность конденсатора для дальнейшего использования без необходимости точной численной оценки величины ЭПС и ее соотнесения с таблицей значений;

— удобство эксплуатации — возможность выполнения непрерывных измерений (в отличие от цифровых ESR-тестеров, требующих нажатия кнопки измерения и выдержки паузы после подключения каждого поверяемого конденсатора), что существенно ускоряет работу;

— необязательность предварительной разрядки конденсатора перед измерением ЭПС.

К недостаткам прибора можно отнести:

— ограниченную функциональность в сравнении с цифровыми ESR-тестерами (отсутствие возможности измерения емкости конденсатора и процента его утечки);

— отсутствие точных численных значений результатов измерений в омах;

— сравнительно узкий диапазон измеряемых сопротивлений.

Цифровой измерительный прибор в лаборатории каждого радиолюбителя сейчас не редкость. Но не все из них могут измерить характеристики конденсаторов. Измеритель, электрическая схема которого изображена на рисунке ниже, специализирован для замера емкости конденсаторов в четырех поддиапазонах:

  • 0…0,01 микрофарад;
  • 0…0,1 микрофарад;
  • 0…1,0 микрофарад;
  • 0…10,0 микрофарад.

В роли устройства отображения применяется жидкокристаллический индикатор марки ИЖЦ-5. Основа функционирования измерителя емкости конденсаторов следующая:

На радиоэлементах DD1.1 и DD1.2 собран управляемый низкочастотный генератор сигналов, частота работы которого зависит характеристиками внешних радиоэлементов R2 - C4 (С1 - C3). Контролируется генератор по выводу 2 DD1.1, к которому подключается RC-цепь.

Измеряемый конденсатор Сх подсоединяется к клеммам Х1 и при замыкании контактов 1 - 3 кнопки SВ1 сперва разряжается, а после, при отпускании кнопки SВ1, - заряжается от источника Uпит. +9 В сквозь одно из сопротивлений R4-R7 в зависимости от избранного поддиапазона.

Время заряда емкости Сх задает момент работы генератора, то есть на его выходе (выв. 4 DD1.2) будет образовано конкретное количество импульсов, пропорциональное емкости Сх. Эти сигналы идут на ввод частотомера, собранного на счетчиках DD2-DD5 марки К176ИЕ4. Эта микросхема являет собой декаду с преобразованием кода счетчика в код семи-сегментного индикатора.

Выходы каждой микросхемы DD2-DD5 подсоединены к подходящим выводам четырех разрядного индикатор HG1. Для стабильной работы индикатора ИЖЦ-5, на его общий электрод (выв. 1, 34) подаются прямоугольные сигналы с выхода генератора на радиоэлементах DD1.3, DD1.4. Эти же сигналы идут на вывод 6 DD2-DD5 для контроля за выходными сигналами микросхем (выв. 17).

Генератор на радиоэлементах DD6.1, DD6.2 формирует рабочий цикл прибора (1,5…2 с). Когда на выходе генератора высокое напряжение, емкость С7 заряжается сквозь сопротивление R3 и на выводе 5 DD2-DD6 образуется короткий положительный сигнал - электросигнал сброса счетчиков в нулевое состояние.

Затем нажимают кнопку SА1 «Измерение» и на индикаторе в течение 1,5…2 с отражается величина емкости конденсатора Сх. Для контроля точности измерителя емкости включен эталонная емкость С6, которая подсоединяется ко входу измерителя посредством выключателя SА1.

Настройка измерителя емкости

После монтажа электрической схемы на нее подают Uпит. +9 В и испытывают работоспособность генераторов на радиоэлементах DD1.3, DD1.4 и DD6.1, DD6.2. Если они исправны, то на индикаторе HG1 будут светится во всех разрядах «О». Далее замыкают между собой выводы 1, 2 DD1.1, в результате на выводах 4 DD1.4 должны образоваться сигналы и индикация HG1 изменятся.

Испытывают работоспособность генератора на всех диапазонах, переводя на них с помощью переключателей SА2 - SА5. В самом высокочастотном диапазоне (вкл SА5) добиваются стабильной генерации посредством переменного резистора R2. В след за этим размыкают выводы 1, 2 DD1.1. подсоединяют ко входу Сх эталонную емкость 1000 пФ, переключаются на диапазон «0…0,01 мк» и после сброса значений индикатора HG1 нажимают а затем отпускают кнопку SВ1 «Измерение».

На индикаторе отобразится определенное значение. Повторяя этапы замера переменным резистором R7 добиваются отображения «1000» на HG1. Так же настраивается электрическая схема и на иных поддиапазонах, только следует применить другие эталонные емкости (0,01 микрофарад, 0,1 микрофарад, 1,0 микрофарад). После этого регулировку измерителя емкости конденсаторов возможно считать завершенной.

Детали измерителя емкости конденсаторов

Емкости С1 - С4, С6 должны быть металлопленочные марки К71, К73, К77, К78. Микросхему 561ЛА7 возможно поменять на 176ЛА7. В роли ИП возможно применить батарейку марки «Крона» либо аккумулятор 7Д - 0,1 или сетевой источник питания.

«Конструкции и технологии в помощь любителям электроники», Елагин Н.А

Измеритель емкости конденсаторов своими руками

Представляю вашему вниманию, как просто сделат ь измеритель ЭПС конденсаторов , который собирается буквально за пару часов буквально "На коленке". Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди. В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все.

Схема устройства измеритель эпс :


О деталях измерителя :

Трансформатор с соотношением витков 11\1. Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированого), вторичку желательно распределить равномерно, с небольшим натягом.

Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40В, но лучше Шоттки.

Диод D2 - супресор на 26В-36В. Транзистор - типа КТ3107, КТ361 и аналогичные.


Измерения ЭПС проводить на измерительном пределе 20В. При подключении разъёма измерительной выносной "головки" прибор "автоматически" переходит в режим измерения ЭПС, об этом свидетельствует показание примерно 36В прибора на пределе 200В и 1000В (зависит от применённого супресора), а на пределе 20В - показание "выход за предел измерения".

При отключении разъёма измерительной выносной "головки" прибор автоматически переходит штатный режим мультиметра.

Итого : включаем адаптер - автоматом включается измеритель, выключили - штатный мультиметр. Теперь калибровка , ничего заумного, обычный резистор (не проволочный) подгоняем шкалу. Вот примерно как это выглядело:


Если закоротить щупы , на индикаторе 0.00-0.01, вот одна сотая и есть погрешность в интервале измерения до 1 Ом, значения ЭПС конденсаторов сравнивал с заводским измерителем.

Одной из самых частых причин выхода радиоэлектронной аппаратуры из строя или ухудшения ее параметров является изменение свойств электролитических конденсаторов. Иногда при ремонте аппаратуры (особенно произведенной в бывшем СССР), изготовленной с применением некоторых типов электролитических конденсаторов (например, K50-...), для восстановления работоспособности устройства прибегают к полной или частичной замене старых электролитических конденсаторов. Все это приходится делать из-за того, что свойства материалов, входящих в электролитический (именно электролитический, т.к. в составе используется электролит) конденсатор, под электрическим, атмосферным, тепловым воздействиями со временем изменяются. И таким образом важнейшие характеристики конденсаторов, такие как емкость и ток утечки - так же изменяются (конденсатор "высыхает" и емкость его увеличивается, часто даже более чем на 50% от первоначальной, а ток утечки возрастает, т.е. внутреннее сопротивление, шунтирующее конденсатор уменьшается), что естественно приводит к изменению характеристик, а в худшем случае и к полному отказу аппаратуры.

Измеритель обладает следующими качественными и количественными характеристиками:

1) измерение емкости на 8 поддиапазонах:

  • 0 ... 3 мкф;
  • 0 ... 10 мкф;
  • 0 ... 30 мкф;
  • 0 ... 100 мкф;
  • 0 ... 300 мкф;
  • 0 ... 1000 мкф;
  • 0 ... 3000 мкф;
  • 0 ... 10000 мкф.

2) оценка тока утечки конденсатора по светодиодному индикатору;
3) возможность точного измерения при изменении напряжения питания и температуры окружающей среды (встроенная калибровка измерителя);
4) напряжение питания 5-15 В;
5) определение полярности электролитических (полярных) конденсаторов;
6) ток потребления в статическом режиме............ не более 6 мА;
7) время измерения емкости.................................... не более 1 с;
8) ток потребления во время измерения емкости с каждым поддиапазоном возрастает,
но................................................................................. не более 150 мА на последнем поддиапазоне.

Суть прибора - измерение напряжения на выходе дифференцирующей цепи, рис.1.

Напряжение на резисторе: Ur = i*R ,
где i - общий ток через цепь, R - зарядное сопротивление;

Т.к. цепь дифференцирующая, то ее ток: i = С*(dUc/dt) ,
где С - заряжаемая емкость цепи, но конденсатор будет линейно заряжаться через источник тока, т.е. стабилизированным током: i = С*const,
значит напряжение на сопротивлении (выходное для этой цепи): Ur = i*R = C*R*const - прямо пропорционально емкости заряжаемого конденсатора, а значит измеряя вольтметром напряжение на резисторе мы измеряем в некотором масштабе и исследуемую емкость конденсатора.

Схема представлена на рис. 2 .
В исходном положении испытуемый конденсатор Сх (или калибровочный С1 при включенном тумблере SA2) разряжен через R1. Измерительный конденсатор, на котором (не на испытуемом непосредственно) измеряется напряжение, пропорциональное емкости испытуемого Сх, разряжен через контакты SA1.2. При нажатии кнопки SA1 испытуемый Сх (С1) заряжается через соответствующие поддиапазону (галетный переключатель SA3) резисторы R2 ... R11. При этом зарядный ток Сх (С1) проходит через светодиод VD1, чья яркость свечения позволяет судить о токе утечки (сопротивлении, шунтирующем конденсатор) в конце заряда конденсатора. Одновременно с Сх (С1) через источник стабилизированного тока VT1,VT2,R14,R15 заряжается и измерительный (заведомо исправный и с малым током утечки) конденсатор С2. VD2, VD3 используются для предотвращения разряда измерительного конденсатора через источник напряжения питания и стабилизатор тока соответственно. После заряда Сх (С1) до уровня, определяемого R12, R13 (в данном случае до уровня примерно половины напряжения источника питания), компаратор DA1 отключает источник тока, синхронный с Сх (С1) заряд С2 прекращается и напряжение с него, пропорциональное емкости испытуемого Сх (С1) индицируется микроамперметром PA1 (две шкалы со значениями кратными 3 и 10, хотя можно настроить на любую шкалу) через повторитель напряжения DA2 с высоким входным сопротивлением, что также обеспечивает долгое сохранение заряда на С2.

Настройка

При настройке положение калибровочного переменного резистора R17 фиксируется в каким-либо положении (например, в среднем). Подключая эталонные конденсаторы с точно известными значениями емкости в соответствующем диапазоне, резисторами R2, R4, R6-R11 производится калибровка измерителя - подбирается такой ток заряда, чтобы эталонные значения емкостей соответствовали определенным значениям на выбранной шкале.

В моей схеме точные значения зарядных сопротивлений при напряжении питания 9 В составили:

После калибровки один из эталонных конденсаторов становится калибровочным С1. Теперь при изменении напряжения питания (изменения температуры окружающей среды, например при сильном охлаждении готового отлаженного прибора на морозе показания емкости у меня получались заниженными процентов на 5) или просто для контроля точности измерений достаточно подключить С1 тумблером SA2 и, нажав SA1, калибровочным резистором R17 произвести подстройку PA1 на выбранное значение емкости С1.

Конструкция

Перед началом изготовления прибора необходимо выбрать микроамперметр с подходящей шкалой(-ами), габаритами и током максимального отклонения стрелки, но ток может быть любым (порядка десятков, сотен микроампер) благодаря возможности настройки и калибровки прибора. Я применил микроамперметр ЭА0630 с Iном = 150 мкА, классом точности 1.5 и двумя шкалами 0 ... 10 и 0 ... 30.

Плата была разработана с учетом того, что она будет крепиться непосредственно на микроамперметре при помощи гаек на его выводах, рис.3 . Такое решение обеспечивает и механическую, и электрическую целостность конструкции. Прибор размещается в подходящий по габаритам корпус, достаточный для размещения также (кроме микроамперметра и платы):

SA1 - кнопка КМ2-1 из двух малогабаритных переключателей;
- SA2 - малогабаритный тумблер МТ-1;
- SA3 - малогабаритный галетный переключатель на 12 положений ПГ2-5-12П1НВ;
- R17 - СП3-9а - VD1 - любой, я применил какой-то из серии КИПх-хх, красного цвета свечения;
- 9-ти вольтовая батарея «Корунд» с габаритами 26.5 х 17.5 х 48.5 мм (без учета длины контактов).

SA1, SA2, SA3, R17, VD1 закрепляются на верхней крышке (панели) прибора и располагаются над платой (батарея укрепляется при помощи проволочного каркаса прямо на плате), но соединяются с платой проводами, а все остальные радиоэлементы схемы располагаются на плате (и под микроамперметром непосредственно тоже) и соединяются печатным монтажом. Отдельного выключателя питания я не предусматривал (да и в выбранный корпус он бы уже не поместился), совместив его с проводами для подключения испытуемого конденсатора Сх в разъеме типа СГ5. «Мама» XS1 разъема имеет пластмассовый корпус для установки на печатную плату (она устанавливается в углу платы), а «папа» XP1 подключается через отверстие в торце корпуса прибора. При подключение разъема «папа» своими контактами 2-3 включает питание прибора. К проводам Сх параллельно неплохо приладить разъем (колодку) какой-либо конструкции для подключения отдельных отпаянных конденсаторов.

Работа с прибором

При работе с прибором нужно быть внимательным с полярностью подключения электролитических (полярных) конденсаторов. При любой полярности подключения индикатор показывает одно и то же значение емкости конденсатора, но при неправильной полярности подключения, т.е. «+» конденсатора к «-» прибора, светодиод VD1 индицирует большой ток утечки (после заряда конденсатора светодиод продолжает ярко гореть), тогда как при правильной полярности подключения светодиод вспыхивает и постепенно гаснет, демонстрируя уменьшение зарядного тока до очень малой величины, практически до полного потухания (следует наблюдать 5-7 секунд), при условии, что испытуемый конденсатор обладает малым током утечки. Неполярные неэлектролитические конденсаторы имеют очень малый ток утечки, что и видно по очень быстрому и полному гашению светодиода. А если же ток утечки велик (сопротивление, шунтирующее конденсатор мало), т.е. конденсатор старый и «течет», то свечение светодиода видно уже при Rутечки = 100 кОм, а при меньших шунтирующих сопротивлениях светодиод горит еще ярче.
Таким образом можно по свечению светодиода определять полярность электролитических конденсаторов: при том подключении, когда ток утечки меньше (светодиод менее ярок) - полярность конденсатора соответствует полярности прибора.

Важное замечание!

Для большей точности показаний любое измерение следует повторять не менее 2-х раз, т.к. в первый раз часть тока заряда идет на создание оксидного слоя конденсатора, т.е. показания емкости чуть-чуть занижены.

РадиоХобби 5"2000

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1, DA2 Микросхема К140УД608 2 К140УД708 или КР544 В блокнот
VT1, VT2 Биполярный транзистор

КТ315Б

2 В блокнот
VD2, VD3 Диод

КД521А

2 КД522 В блокнот
С1 2.2 мкФ 1 В блокнот
С2 Электролитический конденсатор 22 мкФ 1 В блокнот
R1 Резистор

1.3 Ом

1 В блокнот
R2, R4, R6 Подстроечный резистор 100 кОм 3 В блокнот
R3 Резистор

470 кОм

1 В блокнот
R5 Резистор

30 кОм

1 В блокнот
R7, R8 Подстроечный резистор 10 кОм 2 В блокнот
R9 Подстроечный резистор 2.2 кОм 1 В блокнот
R10, R11 Подстроечный резистор 470 Ом 2 В блокнот
R12, R13 Резистор

1 кОм

2 В блокнот
R14 Резистор

13 кОм

1

При ремонте или радиоконструировании часто приходится сталкиваться с таким элементом, как конденсатор. Его главной характеристикой является ёмкость. Из-за особенностей устройства и режимов работы выход из строя электролитов становится одной из основных причин неисправностей радиоаппаратуры. Для определения ёмкости элемента используются разные приборы для проверки. Их несложно приобрести в магазине, а можно изготовить и самому.

Физическое определение конденсатора

Конденсатор - электрический элемент, служащий для накопления заряда или энергии. Конструктивно радиоэлемент представляет собой две пластины, выполненные из токопроводящего материала, между которыми располагается слой диэлектрика. Токопроводящие пластины называются обкладками. Они не связаны между собой общим контактом, но при этом каждая имеет собственный вывод.

Конденсаторы имеют многослойный вид, в них слой диэлектрика чередуется со слоями обкладок. Они представляют собой цилиндр или параллелепипед с закруглёнными углами. Основной параметр электрического элемента - это ёмкость, единицей измерения которой является фарада (F, Ф). На схемах и в литературе радиодеталь обозначается латинской буквой C. После символа указывается порядковый номер на схеме и значение номинальной ёмкости.

Так как одна фарада - это довольно большая величина, то реальные значения ёмкости конденсатора значительно ниже. Поэтому при записи принято использовать условные сокращения:

  • П - пикофарада (pF, пФ);
  • Н - нанофарада (nF, нФ);
  • М - микрофарада (mF, мкФ).

Принцип работы

Принцип действия радиодетали зависит от вида электрической сети. При подключении к выводам обкладок источника постоянного тока носители заряда попадают на токопроводящие пластины конденсатора, где происходит их накопление. Вместе с тем на выводах обкладок появляется разность потенциалов. Её значение увеличивается до тех пор, пока не достигнет величины, равной источнику тока. Как только это значение выровняется, на обкладках перестаёт накапливаться заряд, а электрическая цепь разрывается.

В сети с переменным током конденсатор представляет собой сопротивление. Его величина связана с частотой тока: чем она выше, тем ниже сопротивление и наоборот. При воздействии на радиоэлемент переменной силы тока происходит накопление заряда. Со временем ток заряда уменьшается и пропадает полностью. Во время этого процесса на обкладках устройства концентрируются заряды разных знаков.

Диэлектрик, проложенный между ними, препятствует их перемещению. В момент смены полуволны происходит разряд конденсатора через нагрузку, подключённую к его выводам. Возникает ток разряда, то есть в электрическую цепь начинает поступать накопленная радиоэлементом энергия.

Конденсаторы применяются практически в любой электронной схеме. Они служат элементами фильтра для преобразования пульсаций тока и отсечения различных частот. Кроме этого, они компенсируют реактивную мощность.

Характеристики и виды

Измерения параметров конденсаторов связаны с нахождением величин их характеристик. Но среди них наиболее важной является ёмкость, которая обычно и измеряется. Эта величина обозначает количество заряда, которое может накопить радиоэлемент. В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними.

При этом ёмкость конденсатора зависит от площади обкладок элемента и толщины диэлектрика. Кроме ёмкости радиоприбор характеризуется также полярностью и величиной внутреннего сопротивления. Применяя специальные приборы, эти величины также можно измерить. Сопротивление устройства влияет на саморазряд элемента. Кроме этого, к основным характеристикам конденсатора относят:

Классифицируются конденсаторы по разным критериям, но в первую очередь их разделяют по типу диэлектрика. Он может быть газообразным, жидким и твёрдым. Чаще всего в качестве него используются стекло, слюда, керамика, бумага и синтетические плёнки. Кроме того, конденсаторы различаются по способности изменения величины ёмкости и могут быть:

Также в зависимости от назначения конденсаторы бывают общего и специального назначения. Первого вида приборы являются низковольтными, а второго - импульсными, пусковыми и т. д. Но независимо от вида и назначения принцип измерения их параметров идентичный.

Приборы для измерения

Для измерения параметров конденсаторов используются как специализированные приборы, так и общего применения. Измерители ёмкости по своему типу разделяют на два вида: цифровые и аналоговые. Специализированные устройства могут измерить ёмкость элемента и внутреннее его сопротивление. Простым тестером обычно диагностируется только пробой диэлектрика или большая утечка. Кроме этого, если тестер многофункциональный (мультиметр), то им можно измерить и ёмкость, но обычно предел его измерения невысокий.

Таким образом, в качестве прибора для проверки конденсаторов можно использовать:

  • ESR или RLC-метр;
  • мультиметр;
  • тестер.

При этом диагностику элемента прибором, относящемся к первому типу, можно проводить без выпаивания из схемы. Если же используется второй или третий тип, то элемент или хотя бы один из его выводов необходимо от неё отсоединить.

Использование ESR-метра

Измерение параметра ESR очень важно при исследовании конденсатора на работоспособность. Дело в том, что почти вся современная техника является импульсной, использующей в своей работе высокие частоты. Если эквивалентное сопротивление конденсатора велико, то на нём происходит выделение мощности, а это вызывает нагрев радиоэлемента, приводящий к его деградации.

Конструктивно специализированный измеритель представляет собой корпус с жидкокристаллическим экраном. В качестве его источника питания используется батарейка типа КРОНА. В приборе предусмотрено два разъёма разного цвета, к которым подключаются щупы. Красного цвета щуп считается положительным, а чёрного - отрицательным. Это сделано для того, чтобы можно было правильно проводить измерения полярных конденсаторов.

Перед измерением ESR сопротивления радиодеталь необходимо разрядить, иначе возможен выход прибора из строя. Для этого выводы конденсатора замыкаются сопротивлением порядка одного килоома на короткое время.

Непосредственно измерение происходит путём соединения выводов радиодетали со щупами прибора. В случае электролитического конденсатора необходимо соблюдать полярность, то есть соединять плюс с плюсом, а минус с минусом. После этого прибор включается, и через некоторое время на его экране появляются результаты измерения сопротивления и ёмкость элемента.

Следует отметить, что основная масса таких приборов изготавливается в Китае. В основе их действия лежит использование микроконтроллера, работой которого управляет программа. При измерении контроллер сравнивает сигнал, прошедший через радиоэлемент, с внутренним и на основании различий по сложному алгоритму выдаёт данные. Поэтому точность измерения таких приборов зависит в основном от качества комплектующих, используемых при их изготовлении.

При измерении ёмкости можно также воспользоваться измерителем иммитанса. По своему виду он похож на ESR-метр, но может дополнительно измерять индуктивность. Принцип его действия основан на прохождении тестового сигнала через измеряемый элемент и анализе полученных данных.

Проверка мультиметром

Мультиметром можно измерить почти все основные параметры, но точность этих результатов будет ниже, чем при использовании ESR-прибора. Измерение с помощью мультиметра можно представить следующим образом:

Если тестер выведет на экран значение OL или Overload, то это означает, что ёмкость слишком высока для измерения мультиметром или конденсатор пробит. Когда перед полученным результатом впереди будет стоять несколько нулей, предел измерения необходимо понизить.

Применение тестера

Если под рукой не окажется мультиметра, способного измерить ёмкость, то можно провести измерения подручными средствами. Для этого понадобятся резистор, блок питания с постоянным уровнем выходного сигнала и устройство, измеряющее напряжение. Методику измерения лучше рассмотреть на конкретном примере.

Пусть будет конденсатор, ёмкость которого неизвестна. Чтобы её узнать, понадобится выполнить следующие действия:

Такой алгоритм измерения нельзя назвать точным, но общее представление о ёмкости радиоэлемента он вполне способен дать.

Если есть познания в радиолюбительстве, можно собрать прибор для измерения ёмкости своими руками. Существует множество схемотехнических решений разного уровня сложности. Многие из них основаны на измерении частоты и периода импульсов в цепи с измеряемым конденсатором. Такие схемы сложны, поэтому проще использовать измерения, основанные на вычислении реактивного сопротивления при прохождении импульсов фиксированной частоты.

В основе схемы такого прибора лежит мультивибратор, частота работы которого определяется ёмкостью и сопротивлением резистора, подключёнными к выводам D1.1 и D1.2. С помощью переключателя S1 устанавливается диапазон измерения, то есть изменяется частота. С выхода мультивибратора импульсы поступают на усилитель мощности и далее на вольтметр.

Калибровка прибора проводится на каждом пределе с помощью эталонного конденсатора. Чувствительность устанавливается резистором R6.



Читайте также: