Прибор для обнаружения коротко замкнутых витков. Ƒ↓ — Прибор проверки якорей (ППЯ) Прибор для определения кз витков в катушках

Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.

Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.

Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.

Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.

С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.

При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.

Как найти межвитковое замыкание

Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.

Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.

Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.

Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.

Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.

Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.

Самодельный прибор для определения виткового замыкания

Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.


Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.


Намотаны эти катушки как раз на П-образном трансформаторном железе.

Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.

При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.

Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.

Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.

Рассчитываем количество витков катушек по формуле для трансформаторов.

13200 делим на сечение сердечника в см 2 . Сечение нашего сердечника:

3,6 см х 2,1 см = 7,56 см 2 .

13200: 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800: 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.

На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.

Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.

Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.

Сравним дроссель фабричный и самодельный.

Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.

Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Способ №2 проверки якоря на витковое замыкание

Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.

Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.

Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.

Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.

Межвитковое замыкание трансформатора

У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.

При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.

Чтобы проверить с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.

Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.

Межвитковое замыкание статора

Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.

Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.

Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Кроме проверки на наличие обрыва, надо также проверить катушку на отсутствие внутри нее короткозамкнутых витков. Проверить наличие короткого замыкания внутри обмотки с помощью омметра без предварительной ее разборки невозможно. Поэтому для выявления такого дефекта лучше воспользоваться простым приспособлением, схема которого приведена на рис. 40.

С помощью этого прибора можно определить наличие короткозамкнутых витков внутри катушек индуктивности или обмоток небольших трансформаторов, внутренний диаметр которых не превышает 35 мм. В некоторых случаях прибором удается определить короткозамкнутые витки и в катушках большего диаметра. Следует заметить, что прибор можно приспособить для проверки катушек различных размеров, для этого только надо предусмотреть применение сменных катушек, намотанных на стержни соответствующего диаметра.

Схема и принцип работы прибора. Прибор собран на транзисторе, что позволило сделать его малогабаритным и весьма удобным в эксплуатации. Генератор ВЧ колебаний собран на транзисторе типа П11А, однако можно применить и любой другой транзистор, имеющий такие же параметры. В случае использования транзисторов типа р-п-р полярность подключения генератора к системе питания надо изменить на обратную. Питается прибор от батареи типа КБС-0,5. Катушки индуктивности L1—L3 намотаны на ферритовый стержень и имеют следующие данные: L1 содержит 110 витков провода ПЭЛ 0,15; L2 — 210 витков провода ПЭЛ 0,15; L3—55 витков провода ПЭЛ 0,12—0,17. При сборке прибора катушки надо установить так, чтобы часть ферритового стержня (35—50 мм) находилась над верхней частью корпуса прибора, так как на эту часть стержня при проверке надевают испытуемую катушку. В основу работы прибора положен принцип поглощения энергии колебаний, наводимых высокочастотным генератором в катушке L3 при установке на стержень катушки, имеющей короткозамкнутые витки.

Изменение наводимой э. д. с. фиксируется индикатором, с помощью которого можно установить наличие брака в катушке. В приборе можно применить любой микроамперметр магнитоэлектрической системы с током полного отклонения 50—100 мка. Наиболее хорошо для этой цели подходят приборы типов М4204, М494, М49 (последний тип прибора можно рекомендовать в том случае, когда размеры прибора не критичны, например, при эксплуатации прибора в стационарных условиях).

Сопротивление добавочного резистора R2 следует подбирать опытным путем при налаживании прибора в зависимости от чувствительности примененного индикатора. Необходимо обратить внимание на то, чтобы при отсутствии на ферритовом стержне испытуемой катушки угол отклонения стрелки индикатора был бы не менее 3/4 всей шкалы. Это позволит четко следить за изменением показаний индикатора в случае, когда на стержень надета бракованная катушка.

Вариант прибора с питанием от сети. Для разбраковки катушек в производственных условиях можно применить более простой прибор, в котором вместо стрелочного индикатора использована лампочка накаливания. Схема такого устройства изображена на рис. 41. Лампочка (6,3 в, 0,1 а) включена в коллекторную цепь транзисторного усилителя. Режим работы транзисторов устанавливается посредством резисторов R1 и R2.

Следует иметь в виду, что если при настройке прибора обнаружится отсутствие генерации, то надо поменять концы катушки L1 или L2. О наличии генерации можно судить по отклонению стрелки прибора или по яркости свечения лампочки.

Прибор прост в изготовлении, выполнен из стандартных деталей. Для второго прибора необходимо изготовить выпрямитель. Для этого можно использовать любой маломощный трансформатор питания, со вторичной обмотки которого можно снять 12—15 в.

Режим работы и выходное напряжение стабилизатора, в состав которого входят диод Д808 и транзистор П201, устанавливаются с помощью резистора R5.

Вероятно, многие замечали, проверяя целостность обмоток электродвигателей, трансформаторов, дросселей с помощью тестера, что если разорвать цепь катушка индуктивности-тестер, а затем тут же случайно коснуться выводов катушки, то можно почувствовать слабый электроудар. Можно этому эффекту не придать никакого значения, можно подумать о том, что вероятно проявляется ЭДС самоиндукции катушки, а можно и призадуматься: а нельзя ли как-то из этого извлечь пользу?


Оказалось, что можно, т.к. ЭДС самоиндукции катушки индуктивности представляет собой вполне конкретный бросок напряжения, амплитуда которого зависит от напряжения питания разрываемой цепи, от индуктивности катушки и от ее добротности. При экспериментальной проверке выяснилось, что если параллельно проверяемой катушке подключить неоновую лампочку типа ТН-0,2, ТН-0,3 и т.п., то при разрыве цепи источник питания-катушка ЭДС самоиндукции катушки вызывает вспышки неоновой лампочки, которые тем ярче, чем выше напряжение питания проверяемой цепи, индуктивность катушки и ее добротность.

Именно этому условию отвечают сетевые обмотки силовых трансформаторов, просто высоковольтные обмотки трансформаторов, обмотки дросселей со значительной индуктивностью, обмотки электродвигателей, т.е. именно те узлы электрооборудования, которые наиболее подвержены выходу из строя из-за электрических перегрузок, приводящих к перегреву обмоток, нарушению изоляции между витками обмотки и появлению короткозамкнутых витков. К.з. витки могут появиться и из-за механических повреждений обмоток. Но в любом случае при их появлении катушка индуктивности (обмотка) резко снижает свою добротность, уменьшается ее сопротивление токам промышленной частоты и она будет нагреваться выше допустимого значения, т.е.станет непригодной к дальнейшему использованию.

Оказалось, что если собрать испытательную схему, приведенную на рисунке, то исправные катушки индуктивности при разрыве цепи питания (нажатии на кнопку) дают яркие вспышки неоновой лампочки. А если в катушке индуктивности имеются короткозамкнутые витки, то вспышек илинет вовсе, или они очень слабые. Именно этот эффект является полезным, ибо он позволяет выявлять негодные, подлежащие выбраковке или ремонту электроизделия.

Очевидно, что обмотки, намотанные толстым проводом и имеющие малое количество витков, т.е. малую индуктивность, проверить этим способом не удастся - даже исправные катушки не будут давать вспышек неоновой лампочки. Это нужно учитывать, чтобы не сделать ошибочных выводов. Но для катушек индуктивности, имеющих омическое сопротивление постоянному току порядка десятков-сотен Ом и более, данная схема выявления короткозамкнутых витков очень удобна. Разъем Х1 может быть любого типа и предназначен для подключения источника постоянного напряжения. Величина напряжения питания не критична и может находиться в пределах 3 - 24 В, т.е. можно использовать любые имеющиеся под рукой батарейки или аккумуляторы. Тумблер S1 служит для отключения прибора при длительных перерывах в работе. Лампа HL1 может быть любого типа на напряжение не ниже чем Епит. Она нужна для контроля подачи напряжения питания на схему (для предупреждения ошибочных выводов о непригодности испытываемой катушки). Полезно рядом с проверяемыми катушками иметь заведомо исправную катушку того же типа для сравнительного контроля. Кнопка S2 может быть любого типа и служит для разрыва цепи питания при проверке катушки. Резистор R1 Тр.(Др.) служит для ограничения тока, протекающего через неоновую лампочку HL2. Х2, ХЗ -штыри типа LU4 с надетыми на них зажимами типа <крокодил>, которые с припаянными к ним гибкими проводниками подключаются непосредственно к выводам проверяемой катушки индуктивности.
Собранный без ошибок прибор в настройке не нуждается. Его можно разместить в любом малогабаритном корпусе. Хочу обратить внимание начинающих радиолюбителей, что данный способ проверки катушек индуктивности на отсутствие или наличие короткозамкнутых витков ни в коем случае нельзя использовать для проверки радиочастотных катушек, ибо могут размагнититься подстроечные сердечники или даже перегореть проводники катушек.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Может случиться, что намотанная катушка не содержит короткозамкнутых витков, а в процессе работы появляется сомнение в ее исправности. Как в этом убедиться? Не разбирать же трансформатор, чтобы снова проверить катушку. В таких случаях поможет другой прибор, который позволяет проверять трансформаторы, дроссели и другие катушки индуктивности в собранном виде.

Прибор собран на двух транзисторах и представляет собой генератор низкой частоты. Возникновение колебаний происходит в результате положительной обратной связи между каскадами. Глубина обратной связи зависит оттого, есть в проверяемой катушке короткозамкнутые витки, или они отсутствуют. При наличии замкнутых витков генерация срывается. Кроме того, в схеме есть отрицательная обратная связь, которая регулируется потенциометром R5. Она позволяет при испытании катушек с различной индуктивностью подобрать нужный режим работы генератора.
Для контроля напряжения генератора в схеме есть вольтметр переменного тока. Он состоит из миллиамперметра и двух выпрямительных диодов. Переменное напряжение подается через конденсатор С5. Этот конденсатор служит одновременно и ограничителем, позволяющим установить определенное отклонение стрелки миллиамперметра. Здесь желательно применить миллиамперметр с малым током отклонения (1 мА, 0,5 мА), чтобы измерительная цепь не влияла на работу генератора.
В качестве выпрямительных диодов подойдут диоды типа Д1, Д2 с любым буквенным индексом. При работе генератора подберите емкость конденсатора С5 такой, чтобы стрелка миллиамперметра отклонилась до середины шкалы. Если это не удастся, поставьте последовательно с миллиамперметром резистор и подберите его сопротивление по требуемому отклонению стрелки.
Транзисторы возьмите типа МП39-МП42 (П13-П15) со средним коэффициентом усиления (40-50). Резисторы могут быть любого типа мощностью от 0,12 Вт. Кнопки, выключатель, клеммы можно взять тоже любые.
Питается прибор от батареи «Крона» или любого другого источника напряжением 7-9 В.
Для сборки прибора используйте деревянную, металлическую или пластмассовую коробку подходящих размеров. На передней панели укрепите ручки управления и миллиамперметр, а сверху клеммы для подключения испытываемых катушек.
Как пользоваться прибором? Включите тумблер Вк. Стрелка миллиамперметра должна отклониться примерно до середины шкалы. К клеммам «Lх» подключите выводы проверяемой катушки и нажмите кнопку Кн1. Между базой транзистора Т1 и плюсом питания будет включен конденсатор С1, который с конденсатором С2 составит делитель напряжения, резко уменьшающий связь между каскадами. Если в проверяемой обмотке нет короткозамкнутых витков, то показания миллиамперметра могут увеличиться или незначительно уменьшиться. При наличии и даже одного короткозамкнутого витка колебания генератора срываются, и стрелка возвращается на нуль.
Положение движка переменного резистора R5 зависит от индуктивности проверяемой катушки. Если это, например, обмотка силового трансформатора или дросселя выпрямителя, которые обладают большой индуктивностью, движок должен находиться в крайнем правом по схеме положении. С уменьшением индуктивности проверяемой катушки амплитуда колебаний генератора уменьшается, а при очень малых индуктивностях генерация может вообще не возникнуть. Поэтому с уменьшением индуктивности, движок переменного резистора нужно передвигать влево по схеме. Это позволяет уменьшить глубину отрицательной обратной связи и увеличить тем самым напряжение между эмиттером и коллектором транзистора Т1
При испытаниях катушек очень малой индуктивности-контура приемников с ферритовыми сердечниками, индуктивность которых от 3 до 15 мГн, дополнительно необходимо увеличить глубину положительной обратной связи. Для этого достаточно нажать кнопку Кн2. Прибором можно проверять катушки с индуктивностью от 3 мГн до 10 Гн.

Внимание!

Если не удастся найти переменный резистор на 1,2кΩ, соберите участок схемы возле R5 по следующей схеме:

100Ω R5 1kΩ 100Ω К R3 (---[___]----[___]----[___]---) к R7 | К R6

Переменный резистор должен быть однооборотным и безындукционным, таким, как СП0, СП3, СП4 (либо иностранный эквивалент). Главное, чтобы дорожка была графитовой, а не проволочной.

Резисторы 100 Ω следует припаять к выводам R5, затем надеть на них кембрик либо термоусадочную трубку.

Транзисторы подходят любые из ряда: МП39Б, МП40(А/Б), МП41, МП41Б, МП42, МП42Б (или аналоги). Если изменить разводку платы – можно ставить транзисторы КТ361 (кроме КТ361А), КТ209Д или любые другие маломощные P-N-P с Ку=40…50.

Печатная плата:


(скачать в формате Sprint-Layout 5)

Схема взята из брошюры «Первые шаги радиолюбителя — выпуск 4/1971», развёл печатную плату – Александр Тауенис.

ВНИМАНИЕ! 13/05/2013 обновлена разводка платы, новая версия доступна доступна по той же ссылке . Помимо оригинальной версии для транзисторов МП39-42, в.lay файл включы также версии с транзисторами КТ361 (обычный монтаж) и КТ361 (поверхностный монтаж типоразмера 0805). В SMD-версию включены резисторы 1КОм, поэтому можно использовать обычный переменный резистор R5 на 1 килоом без навесных извращений а-ля 1960-ые.



Читайте также: