Данные сменных катушек гир 2. Электрические схемы бесплатно

(ГИР) —универсальный измерительный прибор. С помощью его настраивают высокочастотные каскады приемников, радиостанций и измеряют частоты колебательных контуров, емкости конденсаторов и индуктивности катушек и производят ряд других измерений.

Рис. 31. Схема гетеродинного измерителя резонанса.

Схема ГИР показана на рис. 31. Прибор представляет собой генератор высокой частоты, собранный по схеме-трехточке на лампе Л1. Изменения сеточного тока лампы фиксируются микроамперметром. Питание прибора осуществляется от одиополупернодного выпрямителя переменного напряжения сети.

Принцип пользования прибором заключается в том, чтобы при любом измерении отмечать, на какой частоте происходит резонанс, характеризующийся резким падением сеточного тока лампы. Если на анод лампы ГИР подавать небольшое напряжение, чтобы генератор не возбуждался, а затем поднести катушку ГИР к контуру работающего передатчика, то во время резонанса прибор даст более высокие показания. Прибор имеет шесть сменных катушек, рассчитанных на частоты от 1,5 до 150 Мгц.

Генератор ГИР монтируют в отдельном металлическом корпусе и разъемом соединяют с выпрямителем трехжильным экранированным проводом длиной 50 см (рис. 32). Микроамперметр находится на лицевой панели корпуса выпрямителя.


Рис. 32. Внешний вид гетеродинного измерителя резонанса.

Монтаж генератора нужно выполнять короткими проводниками, иначе прибор трудно будет настроить на частоту 150 Мгц. Лампу помещают возле колодки для включения сменных катушек. Все провода и конденсаторы, идущие на «землю», соединяют с корпусом в одной точке.

Детали. Трансформатор питания Tpi от любого лампового радиоприемника 3-го класса. Важно лишь, чтобы у него обмотка накала ламп была на 6,3 в и повышающая обмотка — на напряжение 150—200 в.

Намоточные данные катушек L1—L5 приведены в табл. 2. Каркасами катушек служат стержни из изоляционного материала — текстолита, эбонита, органического стекла.

Катушка L6 (рис. 32), рассчитанная на диапазон частот 80—150 Мгц, бескаркасная. Она представляет собой незамкнутую вытянутую петлю высотой 45 мм из провода МГ диаметром 2 мм. Отвод сделан на расстоянии 30 мм от заземленного конца.

Выводы и отводы катушек припаивают к штырькам октальных цоколей радиоламп. Для подключения катушек к генератору используют восьми-штырьковую фарфоровую панельку. Для градуировки прибора нужны генераторы стандартных сигналов высокой частоты типов ГСС-6 и ГВМ.

При включении любой катушки в панель генератора ГИР стрелка микроамперметра отклоняется. Резистором R2 устанавливают стрелку прибора в среднее положение шкалы прибора.

Настройку ГИР начинают с катушки L1 Частоту ГСС устанавливают около 2 Мгц, выходное напряжение максимальное. К выходным зажимам ГСС подключают катушку, содержащую 8 витков провода ПЭЛ 0,5. Диаметр катушки должен быть такой, чтобы ее можно было свободно надеть на каркас катушки ГИР. Движок резистора R2 устанавливают в положение, при котором ГИР не генерирует. Катушку ГСС надевают на катушку L4 ГИР и конденсатором C1 добиваются максимального отклонения стрелки прибора —, индикатора настройки. Затем проверяют диапазон частот, перекрываемый ГИР с этой катушкой (для L1 1,55—3,5 Мгц), Если диапазон частот значительно отличается от указанного в табл. 2, то несколько изменяют данные катушки, чтобы установить нужный диапазон частот.

Если стрелка индикатора не отклоняется и, следовательно, невозможно определить резонансную частоту ГИР, тогда включают телефоны в гнезда: при настройке контура ГИР в резонанс с частотой ГСС в телефонах будет слышна модуляция ГСС.

Так настраивают все катушки ГИР. Так как ГСС рассчитан на частоты до 26 Мгц; то катушки L5 и L6 настраивают с помощью генератора метровых волн.

Шкалы частот первых трех диапазонов (катушки L1—L3) чертят на одной половине диска на корпусе генератора ГИР, а шкалы трех остальных диапазонов (катушки L4—L6)—на второй половине диска. Стрелку шкалы делают из органического стекла шириною 12 мм и длиною во всю шкалу. Посередине стрелки наносят риску, которую заливают черной тушью. Стрелку надевают на ось конденсатора переменной емкости и по риске производят отсчет частот.

Измерения с помощью гетеродинного измерителя резонанса

Измерения с помощью ГИР сводятся в основном к сравнению резонансных частот электрических контуров. Чтобы произвести те или иные измерения, в ГИР вставляют катушку соответствующего диапазона частот (иногда сменяют несколько катушек, когда частота измеряемого контура неизвестна) и индуктивно связывают ее с катушкой исследуемого контура. Наблюдая за стрелочным индикатором ГИР, вращают ручку конденсатора переменной емкости, добиваясь резонанса частот. Резонанс фиксируют по резкому уменьшению показаний стрелочного индикатора.

Характер изменения показаний индикатора зависит от добротности катушки и степени связи измеряемого контура с катушкой ГИР: чем выше добротность контура, тем значительнее изменения показаний индикатора.

Измерение коэффициента связи между двумя катушками. С помощью ГИР довольно точно можно измерить коэффициент связи между катушками индуктивности. Делают это так (рис. 38). К одной из этих катушек, лучше всего к катушке с наибольшей индуктивностью L1, подключают конденсатор емкостью 20—100 пф, дважды измеряют резонансную частоту получившегося контура — при разомкнутой второй катушке L2 и при замыкании ее коротким отрезком провода. Соответственно получают две частоты; f1 и f2. Коэффициент связи между катушками определяют по формуле


Рис. 33. Схема измерения коэффициента связи между катушками индуктивности.

Этим методом можно измерять коэффициент связи от 0,1 до 0,7. Меньший коэффициент связи измерить трудно, так как разница между частотами ft и f2 мала. При коэффициенте более 0,7 из-за шунтирующего действия второй катушки падает добротность измеряемой катушки, и точно определить резонанс частоты трудно.

Определение частоты ВЧ генератора.

Для определения частоты генератора, в том числе и вспомогательного гетеродина приемника, переменным резистором (на рис. 31—R2) срывают генерацию ГИР, подносят его катушку к катушке исследуемого генератора и, изменяя емкость конденсатора настройки и сопротивление переменного резистора, добиваются наибольшего отклонения стрелки прибора ГИР. Частоту генерации определяют по шкале конденсатора переменной емкости ГИР в момент резонанса. При этом связь катушки ГИР с генератором ослабляют до минимума: чем меньше эта связь, тем точнее будет определена частота генерации.

Частоту генератора, мощность которого превышает 1 вт, надо измерять очень осторожно, чтобы не повредить прибор ГИР из-за большого тока через него. В этом случае достаточно поднести катушку ГИР к катушке генератора не ближе 20—40 мм. По мере настройки ГИР в резонанс с частотой генератора его постепенно относят от катушки генератора дальше. Это предупреждает повреждение прибора и дает более точный отсчет частоты.

Измерение индуктивности катушки. Для измерения индуктивности катушки к ней подключают конденсатор, емкость которого известна, и с помощью ГИР измеряют резонансную частоту получившегося контура. Индуктивность катушки определяют по формуле

где L — измеряемая индуктивность, мгн\ С — известная емкость конденсатора, пф; f — резонансная частота контура, Мгц.

Для измерения индуктивности катушки с большим числом витков емкость подключаемого к ней конденсатора должна быть 150~ 300 пф. При измерении индуктивностей катушек УКВ диапазона его емкость должна быть 25—30 пф. Для упрощения расчета индуктивности катушек диапазонов средних и длинных волн к ним подключают конденсатор емкостью 100 пф.

Измерение емкости конденсатора производят с помощью эталонной катушки, индуктивность которой известна. Индуктивность этой катушки может быть от 10 до 200 мгн. Методика измерения такая же, как при измерении индуктивности катушки, с той лишь разницей, что эталоном является не емкость, а индуктивность. Отмечая точку резонанса, определяют емкость конденсатора по той же формуле, только емкость и индуктивность меняют местами:


где С — измеряемая емкость, пф; L — индуктивность катушки, мкгн f — резонансная частота, Мгц.

Этим способом можно измерять емкости конденсаторов от 10 до 1500 пф.

Настройка антенны с помощью ГИР заключается в измерении ее резонансной частоты. Для этого используют индуктивную (рис. 34) или емкостную (рис. 35) связь ГИР с антенной. Выбор места связи ГИР с антенной и вид связи (емкостная или индуктивная) имеют значение при измерении резонансной частоты антенны. Для точного измерения резонансной частоты антенны нужно знать хотя бы приблизительно частоту, на которой будет работать антенна. Коэффициент связи должен быть больше, чем при определении резонансной частоты контура. Особенно сильная связь антенны с ГИР должна быть на частотах меньше 10 Мгц.

Если длина антенны более половины длины волны, то применяют емкостную связь (через конденсатор емкостью 5— 15 пф). При длине антенны меньше половины волны используют индуктивную связь. При настройке полуволновых вибраторов место разреза вибратора соединяют проводом так, чтобы образовался виток связи (рис. 36) который при настройке подносят к ГИР.

При помощи ГИР можно согласовать антенну с кабелем, а кабель с выходом передатчика. Существует такое правило: при правильном согласовании антенны с кабелем и с передатчиком резонансная частота антенны не должна изменяться при подключении к ней кабеля. Поэтому, изменяя связь ка-беля с передатчиком и размеры симметрирующих элементов, добиваются, чтобы частота ГИР при отключении антенны от кабеля или кабеля от передатчика почти не изменилась.

При измерении резонансной частоты фидеров (кабелей) с малым волновым сопротивлением учитывают, что их индуктивность очень мала (доли микрогенри), поэтому определение резонансных частот проводят тщательно.

В.В. Вознюк. В помощь школьному радиокружку

Ключевые теги: радиолампы, Вознюк, Измерения


При конструировании и настройке радиоаппаратуры, весьма полезен такой остроумный прибор как гетеродинный индикатор резонанса. Прибор, в большинстве случаев, довольно прост и может быть изготовлен даже начинающим радиолюбителем.

Применяется, в основном для измерения частоты резонанса в колебательных контурах радиоаппаратуры. С помощью ГИР, можно также измерять емкости конденсаторов и индуктивности катушек, измерять резонанс антенны.

Гетеродинный – значит генерирующий колебания высокой частоты. У генератора ВЧ нашего прибора, катушка колебательного контура вынесена наружу и выполнена на манер этакого щупа. Принцип измерений основан на том факте, что в случае настройки на одну частоту двух близко расположенных контуров, они входят в резонанс и наблюдается "отсос" энергии колебаний из одного контура в другой. Колебательный контур ГИРа перестраиваемый - имеет переменный конденсатор с проградуированной шкалой.

Чтобы определить частоту резонанса исследуемого контура, катушку ГИРа (или катушку связи) подносят к контуру и изменяя частоту прибора, добиваются минимума показаний индикатора. Настройка довольно «острая». Этакий провал стрелки индикатора. Искомую частоту считывают со шкалы.

Прибор был изготовлен по простейшей схеме, опубликованной в журнале «Радио» №3 1975г. Автор В. Борисов.

Собрать схему ничего не стоит, но для того чтобы прибором было удобно пользоваться, придется повозиться.

Нам потребуется.

Инструменты.
Минимальный набор слесарного инструмента преимущественно для мелких работ, обязательно ножницы по металлу, несколько разных надфилей. Инструмент для разметки. Хорошо бы располагать ювелирным лобзиком или гравёром - для выпиливания окон в корпусе, но можно и обойтись. Лобзик «пионерский», по дереву, плюс подставку «ласточкин хвост» для выпиливания. Понадобится что-то сверлильное – электрическая дрель или сверлильный станок, сойдет и шуруповерт. В отдельных случаях, могут быть полезны вытяжные заклепки с соответствующим инструментом для их установки.

Паяльник небольшой мощности и все что к нему полагается, в том числе набор инструментов для электромонтажа. Паяльник мощностью около 75…100Вт, для конструкционной пайки. Кое-где удобен клеющий пистолет. Немного терпения и аккуратности.

Материалы.
Кроме радиоэлементов, понадобиться немного кровельной оцинкованной стали, кусочек оргсекла и ДВП или текстолит. Немного мелких метизов. Пластиковые каркасы для сменных катушек.

Для начала стоит подобрать все радиоэлементы и зная их габариты заняться компоновкой прибора. Удобно это делать в САПР Автокад. Для домашнего, хоббийного использования, достаточно освоить принцип построения и несколько основных инструментов.

Корпус прибора решено было изготовить из оцинкованной кровельной стали 0,5мм, методом гибки из двух П-образных деталей. Металлический корпус, также, хорошо экранирует схему. Окна в корпусе для установки приборов, разъема, были выпилены гравером с отрезным диском. Удобно будет использовать и ювелирный лобзик.

В этом варианте ГИРа - разъем для сменных катушек должен быть, как минимум три контакта (используется катушка с отводом). Для уменьшения габаритов прибора решено было применить DB-9, похожий на разъем COM порта системного блока компьютера. В схеме предполагается использовать индикатор – микроамперметр на ток 50мкА. Такой прибор имеет значительные габариты. Значительно меньше микроамперметры, использующиеся для индикации уровня записи в старой аппаратуре магнитной записи звука. Для возможности применить такой индикатор, нужно в исходную схему прибора добавить усилительный каскад на низкочастотном транзисторе (схема б). Сам индикатор разбирал, заменил штатную шкалу на самодельную с нулем посередине.

Конденсатор переменной емкости применен с твердым диэлектриком, от импортного радиоприемника.
Изготовлена металлическая коробочка. Две половинки корпуса скрепляются четырьмя винтиками М4. На внутренних стенках припаяны гаечки. Оцинкованная сталь хорошо паяется обычным оловянно-свинцовым припоем с «паяльной кислотой» (хлористый цинк). Не забываем хорошо промыть места паек.

На конденсатор одевается ручка-шкала выточенная из кусочка органического стекла.

На заготовке чертится окружность нужного диаметра. Это можно сделать циркулем, разметочным циркулем (с двумя иглами). Также, для оргстекла, удобно для такой цели использовать штангенциркуль, нужный размер зафиксировать стопорным винтом и чертить острыми лапками для измерения отверстий.

Заготовка была выпилена обычным «пионерским» лобзиком. Края отшлифованы шлифовальной шкуркой, для этого заготовку зажимал в шуруповерте.

Изнутри на прозрачном диске сделаны две глубокие радиальные риски и заполнены краской. На кончиках просверлены маленькие отверстия для удобной разметки шкалы - в нужных местах отметки делают иглой или остро отточенным карандашом. Крепится на ось конденсатора его штатным крепежом от того же радиоприемника. Под подвижным прозрачным диском, на одной с ним оси, расположен неподвижный диск из ДВП закрепленный к корпусу. Диаметр чуть меньше прозрачного, чтобы подвижный диск удобно вращать большим пальцем, держа прибор в руке. Диск выпилен лобзиком и покрыт для прочности несколькими слоями лака. На него приклеена бумажная шкала.

Монтаж мелких элементов, на выводах установочных, выводы максимально короткие, особенно в ВЧ части. Батарея «Крона» расположена внутри корпуса прибора, подключается колодкой от такой же вышедшей из строя. Чтобы она не бултыхалась внутри корпуса на проводах, сделан некий «батарейный отсек» - С-образная деталь из той же кровельной стали. Припаян к снимаемой крышке. Напротив батареи кусочек поролончика, при сборе корпуса он поджимает батарею. На фото, первый вариант катушек.

При помощи гетеродина самодельного радиоприемника оснащенного частотометром, проградуирована шкала. Градуировку можно также осуществить при помощи частотометра, ВЧ генератора, генератора стандартных сигналов (ГСС), наконец, при помощи КВ радиоприемника с точной шкалой.

Прибор в сборе, с двумя сменными катушками, изготовленными из одноразовых шприцев с применением термоклея.

При необходимости измерений в диапазоне сотен килогерц – единиц мегагерц, конструкцию сменной катушки следует применить аналогичную магнитной антенне радиоприемника, на отрезке ферритового стержня.

Гетеродинный индикатор резонанса для определения резонансной частоты колебательного контура усилителя радиочастоты, элемента антенны радиопередатчика или иной активной колебательной системы обычно используют резонансный волномер. Такой прибор содержит колебательный контур, состоящий из калиброванной катушки индуктивности и образцового конденсатора переменной емкости, снабженного градуированной шкалой. Если колебательную систему связать индуктивно с контуром волномера и перестраивать его по частоте, добиваясь возникновения в нем максимального напряжения радиочастоты, то по шкале волномера можно определить резонансную частоту исследуемой колебательной системы.

В радиолюбительской практике для измерения резонансной частоты пассивной колебательной системы чаще всего применяют гетеродинный индикатор резонанса – ГИР. Он объединяет в себе резонансный волномер и маломощный генератор калиброванной радиочастоты. Колебательный контур волномера ГИРа является одновременно и контуром его гетеродина. С помощью такого измерительного прибора несложно определить резонансную частоту колебательного контура, отрезков соединительных линий, элементов антенн коротковолновых радиостанций. ГИР, кроме этого, можно использовать и как сигнал-генератор.

Гетеродинный индикатор резонанса принципиальная схема приведена на рис.

Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме с общим истоком. Такой транзистор обеспечивает прибору значительно большую стабильность частоты, чем биполярный. Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина. Резистор R5 ограничивает ток стока полевого транзистора.

Колебательный контур прибора образуют сменная катушка L1, подключаемая к разъему X1, блок конденсаторов переменной емкости С1 и соединенные с ним последовательно конденсаторы С2, СЗ. Переключают прибор на работу в одном из пяти диапазонов измерения (3…6, 6…10, 8…15,13…25 и 24…35 МГц) включением катушки L1 соответствующей индуктивности.

Через конденсатор С5 напряжение радиочастоты поступает на вход высокочастотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения, и усилителя постоянного тока на транзисторе VT2 с микроамперметром РА1 в коллекторной цепи. Диод VD3 стабилизирует образцовое напряжение на диодах VD2, VD4, тем самым повышая чувствительность детектора и стабильность работы усилителя. Переменным резистором R3, объединенным с выключателем питания SA1, устанавливают стрелку микроамперметра РА1 в исходное положение. Дроссель L2 - элемент развязки гетеродина от источника питания по высокой частоте.

Источником питания прибора может быть встроенная в него батарея напряжением 3…9 В (предпочтение следует отдать батарее «Корунд» или аккумуляторной 7 Д-0,1) или внешний сетевой блок питания с таким же выходным напряжением.

В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним необходимо пользоваться источником с одним и тем же значением напряжения постоянного тока.

Внешний вид прибора показан в заголовке статьи, а монтаж деталей в корпусе - на рис.

Его корпусом служит латунная хромированная коробка размерами 120x70x45 мм с плотно закрывающейся крышкой. Блок конденсаторов переменной емкости С1, индикатор РА1 и переменный резистор R3 размещены на лицевой стенке корпуса. Конденсаторы С2 и СЗ смонтированы непосредственно на выводах секций блока КПЕ и гнездах разъема X1. Остальные детали, кроме батареи питания, смонтированы на печатной плате (рис.), выполненной из фольгированного стеклотекстолита.

Блок КПЕ, использованный в ГИРе, от малогабаритного радиоприемника «Селга». Конденсаторы С2 и СЗ - КС0-1, С5- КД, С9 и С10-оксидные К52-1Б, остальные - КМ-5. Все постоянные резистора типа МЛТ, переменный R3 с выключателем питания SA1 - СПЗ-4вМ. Диоды КД512А (VD1), КД521Б (VD3) можно заменить на любые другие кремниевые 0,12. Катушка готового дросселя пропитана клеем “Суперцемент”.

Намоточные данные контурной катушки пяти диапазонов измерения приведены в таблице.

Каркасами катушек первых трех диапазонов могут служить отрезки полиэтиленовой изоляции коаксиального кабеля РК-106. Катушки двух последних диапазонов бескаркасные. Катушку диапазона 24…35 МГц желательно намотать медным посеребренным проводом диаметром 1 мм.

Конструктивно каждая контурная катушка размещена в карболитовом корпусе от кварцевого резонатора. Между основанием корпуса и защитным колпаком зажат согнутый из тонкого алюминия уголок, к которому приклеена шкала соответствующего диапазона измерения. Делать одну общую шкалу для всех диапазонов нецелесообразно - при различной плотности перестройки применяемых контуров это затруднит пользование прибором.

На торцевой стенке корпуса укреплена двухгнездная колодка кварцедержателя, в которую и вставляют штыри контурной катушки. Шкала при этом оказывается под ручкой блока КПЕ с указательной стрелкой.

Монтаж высокочастотных цепей и соединений выполнен голым медным посеребренным проводом диаметром 1 мм, низкочастотных - проводом МГШВ.

Налаживание ГИРа

начинают с тщательной проверки правильности всех соединений. Затем в гнезда разъема X1 вставляют контурную катушку любого из диапазонов измерения и включают питание. При этом стрелка микроамперметра РА1 должна отклониться от нулевой отметки. Переменным резистором R3 ее устанавливают на крайнюю правую отметку шкалы. Затем, вращая ручку блока КПЕ из одного крайнего положения в другое, наблюдают небольшое перемещение стрелки прибора. При минимальной емкости КПЕ стрелка должна отклоняться больше вправо, что объясняется повышением добротности контура с повышением частоты генератора.

Шкалы всех диапазонов измерения градуируют, пользуясь, например, калиброванным приемником.

Если в каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключают слюдяной конденсатор постоянной емкости. Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле LC=25330/f2 где С - в пикофарадах, L - в микрогенри, f - в мегагерцах.

Определяя резонансную частоту исследуемого контура, к нему возможно ближе подносят катушку ГИРа и, медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, замечают соответствующее положение указателя на ручке КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается максимальный «провал* стрелки, как раз и будет соответствовать резонансной частоте исследуемого контура.

Г. Гвоздицкий по материалам журнала Радио.

Особенность нашей рубрики «Советуем повторить…» заключается в том, что в ней публикуются материалы, основанные на практическом опыте повторения той или иной конструкции, схема и описание которой были ранее напечатаны в радиолюбительской литературе. Выполненные конструкции, как правило, носят сугубо утилитарный характер, т.е. опробованы радиолюбителями, содержат фото и практические советы, что особенно ценно для начинающих радиолюбителей.

На этот раз мы представляем конструкцию гетеродинного индикатора резонанса, предложенную Г.Гвоздицким в журнале Радио,1993, №1.

В радиолюбительской практике для измерения резонансной частоты пассивной колебательной системы чаще всего применяют гетеродинный индикатор резонан-са - ГИР. Он объединяет в себе резонансный волномер и маломощный генератор калиброванной радиочастоты. Такой прибор содержит колебательный контур, состоящий из калиброванной катушки индуктивности и образцового конденсатора переменной емкости, снабженного градуированной шкалой. Если колебательную систему связать индуктивно с контуром волномера и перестраивать его по частоте, добиваясь возникновения в нем максимального напряжения радиочастоты, то по шкале волномера можно определить резонанс-ную частоту исследуемой колебательной системы, Колебательный контур волномера ГИРа является одновременно и контуром его гетеродина. С помощью такого измерительного прибора несложно определить резонансную частоту колебательного контура, от-резков соединительных линий, элементов антенн коротковолновых радиостанций. ГИР, кроме этого, можно использовать и как сигнал-генератор.

ГИР Гвоздицкого является более совершенным, чем описанные в и отличается более высокими характеристиками, хотя их генераторы во всех случаях выполнены на полевом транзисторе, что обес-печивает значительно большую стабильность частоты, чем при применении биполярного транзистора.

«Принципиальная схема предлага-емого ГИРа приведена на рис.1. Его гетеродин выполнен на полевом транзисторе VT 1, включенном по схеме с общим истоком. Резистор R 5 ограничивает ток стока полевого тран-зистора.Дроссель L 2 - элемент развязки гетеродина от источника питания по высокой частоте».

Диод VD 1, подсоединенный к. выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приб-лижая ее к синусоидальной. Без диода по-ложительная полуволна на тока стока станет искажаться из-за увеличения коэффици-ента усиления транзистора с повышени-ем напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина».

Рис.1

В отличие от уже упоминавшихся выше схем колебательный контур прибора обра-зуют сменная катушка L 1, подключаемая к разъему X 1, не имеющая среднего вывода, что упрощает ее коммутацию. «Переключают» прибор на работу в нужном диапазоне частот вклю-чением катушки L 1 соответствующей ин-дуктивности. Вариант таких катушек, выполненных на каркасах из лабораторных пробирок для забора крови , показаны на фото (рис.2) и подбираются радиолюбителем на желаемый диапазон, или выполняются согласно рекомендациям в первоисточнике .


Рис.2

«Через конденсатор С5 напряжение радиочастоты поступает на вход высоко-частотного вольтметра-индикатора, сос-тоящего из детектора, диоды VD 2 и VD 4 которого включены по схеме удвоения напряжения, что повышает чувствительность детектора и ста-бильность работы усилителя постоянного токи на транзисторе VT 2 с микроамперметром РА1 в коллекторной цели. Диод VD 3 стабилизирует образцовое напряже-ние на диодах VD 2, VD 4. Перемен-ным резистором R 3 объединенным с выключателем питания S А1, устанавливают стрелку микроамперметра РА1 в исходное положение на крайнюю правую от-метку шкалы …».

В описываемом ГИРе нет дополни-тельного стабилизатора питающего нап-ряжения, поэтому при работе с ним рекомендовано пользоваться источником с од-ним и тем же значением напряжения пос-тоянного тока - оптимально сетевым блоком пита-ния со стабилизированным выходным напряжением.

Внешний вид прибора и монтаж деталей в корпусе показан на рис. 3,4,5.


Рис.3


Рис.4


Рис.5

Его корпусом служит латунная хромированная коробка размерами 120x70x45 мм с плотно закрывающейся крышкой (от бывшего стерилизатора шприцев типа «Рекорд» ) (рис.3). Ручка блока конденсаторов перемен-ной емкости С1.1 - С1.2 размещена на ли-цевой стенке корпуса. Блок КПЕ, использованный в ГИРе, от малогабаритного радиоприемника «Альпинист». Форма привода верньерного механизма позволяет отмечать карандашом через отверстие частоту в соответствующем диапазоне из-мерения на листке ватмана, приклеенного к корпусу ГИРа под ручкой блока КПЕ (рис.6).


Рис.6

Делать одну общую шкалу для всех диапазонов нецелесообразно из-за сложности такой работы. Тем более, что точность полученной шкалы при различной плотности перестройки при-меняемых контуров затруднит поль-зование прибором.

Катушки L 1 пропи-таны эпоксидным клеем или НН88. Их намоточные данные определяются эмпирически или согласно рекомендациям из . На ВЧ диапазоны их жела-тельно намотать медным посеребрен-ным проводом диаметром 1,0 мм.

Конструктивно каждая контурная ка-тушка размещена на основании распространенного разъема СГ-3. Он вклеен в каркас катушки.

На торцевой стенке корпуса укреплена ответная часть СШ-3, в которую и вставляют штыри контурной катушки (рис.7).


Рис.7

Дроссель L 2 применен готовый и состоит из двух соединенных параллельно дросселей типа ДМ0,1 номиналом по 100 мкГ.

Остальные примененные радиодетали соответствуют рекомендациям в первоисточнике .

Конкретную «калибровочную» отметку на шкале-листке прибора делают перед измерением, пользуясь, например, приемником с цифровой шкалой (или частотомером).

«Если а каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключайте слюдяной конденсатор постоянной ем-кости (рис.8).


Рис.8

Индуктивность контурной катуш-ки и емкость контура с учетом дополни-тельного конденсатора можно рассчи-тать по формуле

LC =25330/ f ²

где С- в пикофарадах, L - в микрогенри, f - в мегагерцах.

Определяя резонансную частоту ис-следуемого контура, к нему возможно ближе подносят катушку ГИРаи, медлен-но вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, отмечают соот-ветствующее положение ручки КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвра-щается в исходное положение. Та отметка на шкале, где наблюдается максималь-ный *провал* стрелки, как раз и будет соответстовать резонансной частоте исследуемого контура».

Выделенные цветом абзацы «в кавычках» - оригинальный текст

из статьи Г.Гвоздицкого в журнале «Радио».

Источники:

1. Г.Гвоздицкий. Гетеродинный индикатор резонанса. - Радио,1993, №1, с.36,37.

2. ГИР на 1,8-150 мГц . - Elektronisches Jarbuch 1988, c.169..

3. В.Демьянов. Усовершенствованный ГИР. - Сайт Н.Большакова (RA 3 TOX ) «Радиофанат».

Все, кто имел дело с гетеродинным индикатором резонанса, знают, что работа с ним является довольно кропотливым делом, т.к. в процессе измерения приходится манипулировать не только ручкой настройки частоты, но и регулятором чувствительности прибора, а в некоторых конструкциях - и ручкой режима.

Это связано с тем, что практически во всех перестраиваемых в широком диапазоне частот генераторах амплитуда ВЧ напряжения также меняется в широких пределах. Чтобы не пропустить момент резонанса, ручку настройки необходимо вращать как можно медленнее и внимательно наблюдать за показаниями стрелочного индикатора.

Работа с ГИРом значительно упрощается и ускоряется, если дополнить его устройством, фиксирующим момент резонанса каким-либо световым индикатором.

На рис. 1 приведена схема ГИРа со светодиодным индикатором резонанса. Работу его поясняют графики рис. 2 и рис. 3. Чем выше скорость вращения ротора конденсатора настройки, тем круче фронт изменения ВЧ напряжения на контуре (линия А1 на графиках рис. 2 и рис. 3).

Задача заключается в фиксации резкого уменьшения уровня В Ч напряжения. Решается она применением дифференциального усилителя, который, в общем случае, реагирует не на абсолютную величину параметра, а на его изменение в какую-либо сторону.

Задающий генератор ГИРа собран на транзисторе VT1 по схеме, описанной в . Дифференциальный усилитель собран на транзисторах VT3, VT4, VT5. При перестройке по диапазону в сторону уменьшения емкости или, что то же самое, в сторону увеличения ВЧ напряжения (показано стрелкой на рис. 2 и рис. 3) выпрямленное напряжение отрицательной полярности на затворе VT3 плавно увеличивается.

На стоке VT3 и левой обкладке конденсатора С7 напряжение положительной полярности также плавно увеличивается. Транзисторы VT4 и VT5 при этом заперты. В момент резонанса напряжение на затворе VT3 резко меняется в сторону положительного потенциала, происходит резкое падение потенциала стока VT3. Конденсатор С7 "передает" этот перепад потенциала на базу VT4. В результате VT4 и VT5 открываются и светодиод HL1 ярко вспыхивает. Длительность вспышки зависит от постоянной времени заряда C7R7.

На транзисторе VT2 собран усилитель постоянного тока для измерительного прибора


Q -добротнотсь в усл. ед.
U - выскоочастотное напряжение в усл. ед.
а - угол поворота ротора конденсатора С, град.
С - емкость конденсатора.
t - время вращения ротора конденсатора, усл. ед
т.1 - момент резонанса.

РА. Резистором R5 устанавливается необходимая чувствительность прибора. При помощи цепочки R4VD4 подается дополнительное положительное смещение на исток VT2. Резистором R3 стрелка прибора устанавливается в любое место шкалы, на-иболее удобное для наблюдения момента-резонанса.

Диапазон МГц

0,12-0,5

0,495-2,0

1,95-8,1

Работа с прибором очень проста. Исследуемый колебательный контур связывают с контуром ГИРа. Ручкой настройки быстро переводят конденсатор из положения максимальной емкости в другое крайнее положение. Если вспышки светодиода не было, на данном поддиапазоне резонанса нет.

Если наблюдалась вспышка светодиода, установив ручку настройки примерно в положение, при котором был резонанс, резистором R5 устанавливают максимальную чувствительность измерительного прибора, резистором R3 устанавливают стрелку в середину шкалы и, медленно вращая ручку настройки ГИРа, определяют момент резонанса традиционным способом. Для более точного определения момента резонанса служит "растягивающий" подстроечный конденсатор с воздушным диэлектриком С5 емкостью 2...15 пф, ручка которого выведена на переднюю панель ГИРа. Значение частоты резонанса считывается по шкале частотомера.

Значения L, С* приведены в таблице. Радиолюбители могут сами рассчитать величины L, С* и намоточные данные L исходя из выбранных граничных частот под-диапазонов, имеющихся переменного конденсатора и каркасов для катушек индуктивности. Методика расчета L, С* неоднократно приводилась в технической литературе, например .

При повторении ГИРа по данной схеме необходимо учесть, что на низкочастотном диапазоне может наблюдаться периодический срыв колебаний (релаксация) из-за большой добротности контура и большой ПОС. Избавиться от этого можно либо включив в разрыв отвода от катушки резистор на 47 - 200 Ом, либо сделав отвод не от середины катушки, а ближе к "земляному" концу. Следует учесть также, что светодиод будет вспыхивать всякий раз при быстром вращении ротора конденсатора в сторону увеличения емкости, т.к. при этом ВЧ напряжение на контуре уменьшается.

Литература

1. Транзисторный ГИР // Радио. - 1971. - N 5. - С. 55.
2. Борисов В. ГИР // Радио. - 1974. - N3. - С. 53.
3. Гавриков В, Прахин П. Амплитудно-стабильный гетеродин // Радио. - 1984. - N 2. - С. 22.
4. Бирюков С. К расчету колебательных контуров генераторов // Радио. - 1992. - N11-С. 23.
5. Малинин P.M. Справочник радиолюбителя-конструктора. - М.: Энергия, 1978.



Читайте также: