Импульсный металлодетектор. Глубинный металлодетектор своими руками: схема, инструкция и отзывы

Импульсные металлоискатели получили свое название от принципа своей работы: сначала он излучает импульс сигнала, потом молчит и принимает на ту же катушку сигнал от металлической цели, потом опять излучает импульс и т.д.

Еще импульсные металлоискатели называют аналоговыми. Это связано с тем, что они ничего не обрабатывают, у них нет никаких встроенных программ для обработки сигнала, а сразу посылают сигнал от цели на динамик оператору.
Они не имеют процессора в отличии от многих современных металлоискателей с экраном, выдающих на дисплей число VDI.

Но не всякий аналоговый металлоискатель является импульсным. Прибор может работать и на других технологиях и быть аналоговым. Ниже представлен дисплей типичного представителя аналоговых металлоискателей - Golden Mask 4WD PRO .

Достоинства и недостатки импульсных (аналоговых) металлоискателей.

Достоинства:

  • быстрый отклик от цели
  • высокая глубина поиска
  • эффективная работа на тяжелых грунтах
    • хорошая работа на высоко минерализованных почвах
    • хорошая работа на соленых почвах
Недостатки:
  • им сложно работать в условиях сильной замусоренности металлическими предметами
  • сильно подвержены влиянию электромагнитных помех
Однако технологии не стоят на месте. И процессорные металлоискатели преодолевают свои недостатки и импульсные миноискатели нейтрализуют свои недостатки.

Так цифровые металлоискатели увеличивают глубину поиска, могут работать на тяжелых грунтах.

А аналоговые миноискатели становятся в состоянии работать в условиях большого количества металлического мусора.

Тем не менее, по большому счету наши утверждения о достоинствах и недостатках аналоговых металлоискателей остаются верны.

Справедливо мнение, что импульсные металлоискатели хороши на месте старых поселений, в сельской местности, на пляжах, но не в городских условиях.

Принцип работы импульсного металлоискателя

Импульсный металлоискатель имеет катушку с одной намоткой проволоки. Эта намотка и принимает и излучает сигнал.
Сначала металлоискатель излучает сигнал, потом молчит и принимает наведенный сигнал от цели. (Как Вы, наверно, знаете электромагнитный импульс наводит электромагнитный сигнал в металлическом предмете, а при движении электромагнитного поля в проводнике возникает электрический ток и обратный импульс).

Такие металлоискатели называют еще - PI -детекторами.

Классический пример такого прибора - это импульсный глубинный металлоискатель Deep Hunter PRO-3 фирмы Golden Mask.

Но вернемся к теме статьие - "Импульсные металлоискатели - принцип работы".

Сигнал полученный от цели имеет изменение скорости затухания по сравнению с исходным сигналом. На этом основании и делается вывод, что под катушкой находится цель.

На схеме внизу показана эта картина в точке - 10 (в ней находится цель). Видно изменение скорости затухания.

Получаемый сигнал от цели увеличивается по мере приближения к ней катушки. Соответственно, если цель лежит глубоко, то будет слышен слабый сигнал.

(У приборов цифровых сила сигнала должна превысить определенный порог, после чего процессор даст команду на звуковой сигнал о цели).

Аналоговые металлоискатели могут иметь только линейную дискриминацию, т.е. Вы можете последовательно закрыть или открыть сегменты целей. (В профессиональных цифровых - это можно делать в произвольном порядке. За это отвечает процессор)

Соответственно та же проблема и с аудио настройками. В импульсных приборах Вы можете менять высоту звука. Но звуков будет не больше 2-х: черный, цветной. Тональность их будет различна (Вы сами это подстраиваете), но о полифонии не может быть и речи. А в процессорных это бывает часто, и этим занимается процессор.
Аналоговые приборы не имеют дисплея, а только имеют ручки и тумблеры регулировок. (нет процессора, который будет обрабатывать что-то и передавать на дисплей)

Импульсники могут одночастотными или многочастотными, но в любом случае надо будет щелкать тумблер для перехода на новую частоту.

Чем ниже частота в этих приборах, тем глубже они видят цель. Для слабо проводящих целей требуется высокая частота. (Собственно в цифровых приборах та же зависимость).

Обычно импульсные металлоискатели работают на частотах ниже 30кГц.

Всем привет! Давно я тут не писал. Много было дел… За окном уже весна, второй день температура держится на уровне 9-10 градусов. Снег неспешно сходит. Открытие сезона уже не за горами. Так вот, одним из дел, которое помогло бы скоротать время и приблизить сезон, была сборка металлоискателя с нуля своими руками. Результат меня порадовал:)

Кому не терпится, видео с работой данного чуда:

Все началось с того, что я наконец обзавелся фольгированным текстолитом, не заплатив за это ни копейки)). Первым делом для испытания этого текстолита) была сборка металлоискателя.

Для сборки была выбрана схема импульсного металлоискателя «Пират», ибо прибор на биениях делать было не охота). Итак, схема загружена, установлена программа Sprint Layot, распечатана на фотобумаге печатная плата. Приступаю к сборке.

Плату делал методом лазерного утюга (сокращенно ЛУТ). Подробно расписывать не буду, на это дело есть гугл:). Все, вырезан текстолит, дорожки перенесены на плату.

Далее развожу раствор для травления. И тут мне снова помог электролит из аккумулятора! Раствор включил в себя поваренную соль, перекись водорода и электролит (вечером этого же дня банку с раствором опрокинул котенок).

Ну вот, плата протравлена, отверстия просверлены. Теперь ее надо залудить. Лужение производилось паяльником.

Настал самый длительный этап сборки. А именно сбор, поиск и впайка деталей. Обе микросхемы и два транзистора были найдены без затруднений. Конденсаторы и резисторы вытащены со старых плат. Но не нашлось у меня нескольких резисторов. За ними пришлось идти в телемастеркую. Там мне их дали БЕСПЛАТНО.

Плата собрана, экспериментальная катушка намотана. Настал момент включения. Первое включение производилось от двенадцативольтового блока питания. Скрутил провода, подключил катушку, перепроверил полярность, включаю…не работает…молчит(. Греется транзистор. Перепаял. Включаю снова…тишина. Последующие проверки выявили неисправность микросхемы К157УД2. На следующий день была найдена новая и пуск повторился. И тут собранная схема показала признаки жизни. Оно работает!!! Радости было море:)

На следующий день схема была налажена и получила культурный корпус. Выведены разъемы. Теперь нужна была нормальная катушка. Ее я вырезал из куска фанеры. Потом же подобрал количество витков, залил обмотку термоклеем и замотал синей изолентой.

Теперь требовался материал для штанги, чему и был посвящен следующий день. Купил 4 метра водопроводной ПВХ трубы и 0,5 метра канализационной трубы. Из них были вырезаны соответствующие детали для сбора штанги. Трубы спаивались с помощью термоклея и фена.

Штанга собрана, катушка готова, корпус прибора приобрел надлежащий вид. Осталось все совместить. Блок прикреплен к штанге с помощью фитингов. А вот для крепления катушки в магазине не нашлось пластикового болтика. Катушка пока что временно держится на стяжке.

Осталось только купить аккумулятор с ЗУ. Работает и с аккумулятором от шуруповерта:).

В условиях дома прибор начинает реагировать на пятак с 20 см, что думаю неплохо. Также скажу, что он не имеет дискриминации, поэтому нельзя отсечь столь ненавистный всем копателям металломусор.

От процесса сборки и от полученных результатов я получил полное удовлетворение и, как я думаю, немного повысил навыки радиолюбительства, применив в своей практике новые методы.

Итак, мои вложения (кроме покупки аккумулятора) ушло 230 рублей. С аккумулятором, думаю, будет около 1000 рублей. Данный прибор можно легко окупить и даже заработать, занимаясь с его помощью поиском металлолома. Поиск монет тоже возможен, но в виду отсутствия дискриминации, он будет затруднителен.

Скажу насчет фотографий. Их я делал для себя, поэтому их качество немного жидковато:)

Также советую вам подписаться на канал «Старая Вятка» , где вас ждет много видео о копе, металлоискателях, навигации, картографии и уходу за монетами:

Моделист-конструктор 1998 №7

Разработанный мною металлодетектор пока не применялся ни в миротворческих операциях по выявлению и обезвреживанию минных полей, ни в крупномасштабных геологических или археологических изысканиях. Рассчитанный не на профессионалов, а на любителей, чьё желание «заглянуть под землю» способна удовлетворить конструкция с параметрами, приведёнными в таблице, он представляет собой улучшенный вариант «металлоискателя на биениях».

Чувствительность у прибора повышена за счёт выгодного использования (чёткой фиксации) зависимости длительности зондирующего импульса от интенсивности самих посылок с введением в поисковый генератор автоматической подстройки частоты (АПЧ). Причём дополнительных мер для стабилизации напряжения и температурной компенсации электронных блоков не потребовалось.

А предсказываемые скептиками «непримиримые противоречия» (мол, изменение частоты у поискового колебательного контура при попадании металла в рабочую зону несовместимо с нормальным функционированием системы АПЧ) разрешила сама практика. Оказалось, что при перемещении датчика над исследуемой поверхностью со скоростью 0,5-1 м/с схема прибора вовсе не вступает в конфликт с автоподстройкой частоты, имеющей значительную инерционность (большую постоянную времени).

Уже из анализа блок-схемы видно, что изготовить такой прибор заведомо сложнее, чем любой из прежних менее чувствительных аналогов, включая металлоискатели, опубликованные в № 8"85 и 4"96 журнала «Моделист-конструктор». Ведь у предлагаемой мною разработки, помимо стандартного набора из образцового кварцевого (1) и измерительного (2) генераторов, выносной катушки индуктивности L (поисковой рамки-датчика), смесителя (3) и звукового регистратора ВА (телефонного капсюля), - налицо новые, существенно улучшающие эксплуатационные характеристики, устройства. Это и интегратор (4), вырабатывающий пилообразный сигнал с амплитудой, пропорциональной управляющей частоте биений, и формирователь импульса записи (5), который совместно с ключом (6) и истоковым повторителем VT представляют собой аналоговое запоминающее устройство, фиксирующее пиковое напряжение с интегратора.

Не обходится металлодетектор без компаратора (7), обеспечивающего автоматический перевод электроники из зоны максимальной чувствительности в область регистрации биений «один к одному» (и наоборот), без специального генератора ГУН (8), преобразующего напряжение, сформированное на истоковом повторителе, в электрические колебания частотой 200-8000 Гц. а также без упомянутой выше оригинальной системы автоподстройки частоты АПЧ (9) с особым узлом, замедляющим реакцию прибора на чрезмерно резкое изменение управляющего напряжения- Имеется здесь и ряд других технических решений, среди которых, конечно же, нельзя не выделить «операционник» и спецсмеситель (10).

Как показывает практика, именно такой состав устройств при выбранном способе формирования звукового сигнала позволяет прослушивать обе частоты одновременно, существенно облегчая начальную настройку прибора на определённую чувствительность. И надёжность обеспечивается достаточно высокая. Даже в экстремальной ситуации, когда, скажем, поисковая рамка-датчик приближается к массивному металлическому предмету на расстояние, при котором разностная частота становится почти критической (70 Гц), сбоев в работе не возникает - в головных телефонах слышна только изменяющаяся частота биений.

Теперь о частностях, нашедших своё отражение на принципиальной электрической схеме. Образцовый генератор выполнен на элементе DD1.1. Его частота стабилизирована кварцевым резонатором ZQ1, включённым в цепь положительной обратной связи. Для обеспечения возбуждения генератора при включении питания служит резистор R1. Имеющийся здесь же буферный элемент DD1.2 разгружает генератор, а также формирует сигнал с цифровыми уровнями. Резистор R2 определяет степень нагрузки и максимум мощности, рассеиваемой на кварцевом резонаторе.

Рис. 1. Блок-схема металлодетектора.

Рис. 2. Эпюры напряжений и токов в контрольных точках прибора.

Данный генератор может работать практически с любыми резонаторами при токе потребления 500-800 мкА. А идущий за ним делитель частоты на два (элемент DD2.1) формирует сигнал с симметричным меандром, необходимый для нормальной работы смесителя.

Измерительный генератор собран по схеме несимметричного мультивибратора (транзисторы VT1 и VT2). Выход на режим самовозбуждения обеспечивает цепь положительной обратной связи на конденсаторе С7. Частотозадающими элементами служат С3 - С5, VD1 и поисковая катушка-датчик L1. Причём генерация осуществляется в пределах от 500 кГц до 700 кГц, в зависимости от имеющегося кварцевого резонатора.

Схема металлодетектора

Такой важный параметр, как кратковременная нестабильность, у данного генератора невелик. Уход частоты за первые 10 с сразу после включения питания составляет не более 0,7 Гц (а через каждые 30 мин - до 20 Гц), хотя для нормальной работы прибора считается приемлемым даже 1 Гц за 1 мин (без АПЧ).

Выдаваемый измерительным генератором синусоидальный сигнал, имея амплитуду 1 - 1,2 В, поступает через разделительный конденсатор С9 на триггер DD3.2, который формирует прямоугольные импульсы с цифровыми уровнями и скважностью 2. R5R6 - делитель, необходимый для нормальной работы этого участка схемы. Ну a DD3.3 выполняет роль буферного каскада. Сигнал с него подается на смеситель (Т-триггep DD2.2). Туда же поступает частота от делителя образцового генератора.

Особенности работы DD2.2 таковы, что если на входы С и D этого логического элемента приходят две импульсные последовательности, близкие по частоте, то на выходах формируется сигнал разностной частоты со строго симметричным меандром. Причём все, снимаемое с вывода 12 смесителя, имеет форму, представленную на рисунке 2а.

Прямой, а также задержанный (рис. 26) проинвертированный (благодаря цепи R8C11 и элементу DD4.2) сигналы суммируются на ключе DD5.1, выполняющем роль логического И/ИЛИ с формированием коротких положительных импульсов записи (рис. 2в) для работы аналогового запоминающего устройства (DD5.2, С13. VT3). Но это ещё не все. Снимаемый с выхода DD4.2 сигнал приходит на интегратор, выполненный по классической схеме с использованием VD2, R10 - R11, DA1, C12. Резистор R11 ограничивает ток перезаряда конденсатора С12, разгружая выход элемента DD4.2.

Проинтегрированный сигнал (рис. 2г) через ключ DD5.2. которым управляют импульсы с DD5.1, подается на запоминающую ёмкость С13, где формируется и до нового цикла записи удерживается с высокой точностью напряжение, равное пиковому значению того, что поступает от интегратора (рис. 2д). Конденсатор С14 сглаживает эффект типа «ступенька», который может возникнуть при резкой смене частот биений (рис. 2е).

С истокового повторителя сигнал поступает на компаратор DD4.3, ГУН (генератор, управляемый напряжением) и в цепь петли АПЧ. Делитель R21R22 совместно с R23 и R24 обратной связи сужают диапазон управляющего напряжения до амплитуды 1,2 В. Операционный усилитель DA2 сравнивает полученное с тем, что задано делителем R26R29, и формирует напряжение управления варикапом VD1.

Резистором R26 можно устанавливать начальную точку захвата АПЧ (чувствительность) грубо, a R27 - точно. Более того, при перемещении движка R26 в сторону крайнего (верхнего либо нижнего по схеме) положения легко выходить из зоны захвата АПЧ (±300 Гц), осуществляя режим с частотой биений «один к одному», что делает работу с прибором более гибкой.

Для уяснения особенностей функционирования узла, замедляющего реакцию АПЧ на резкое изменение частоты биений, предположим, что на базе транзистора VT4 имеется, к примеру, некоторое установившееся U б. Допустим также, что в какой-то момент происходит резкое изменение частоты биений и, соответственно, напряжения на С14. Исправная схема нашего металлодетектора обязательно отзовётся на такую «вводную»» адекватным отклонением U б транзистора VT4 от прежнего значения (благодаря большим номиналам R19, R20 и С16). А вот ответом на плавное изменение частоты биений непременно будет реакция в виде медленного изменения названных напряжений.

Когда в зону чувствительности поисковой рамки-датчика попадает металлический предмет и находится там относительно долго, на базе VT4 устанавливается напряжение, которого обычно хватает для возврата на заданный частотный режим. Но при резком отводе датчика в сторону ситуация изменяется, U б транзистора VT4 не сможет быстро вернуться на предыдущий уровень. То есть создаются условия для перехода через «0» (возникновения положительной обратной связи). Чтобы последнее исключить, введено шунтирование R19 диодом VD3, через который происходит быстрый разряд ёмкости С16 (возврат U б на установленный уровень).

Фактически АПЧ имеет (в зависимости от того, в какую сторону происходит изменение частоты биений) две постоянные времени. А так как особое выполнение датчика практически нивелирует влияние ферромагнитных свойств обнаруживаемых предметов на увеличение f поискового генератора то и АПЧ, и прибор в целом работают во всех режимах весьма корректно. ГУН (DD4.4, и R18, С15) преобразует напряжение, изменяющееся с частотой биений, в частоту. А настроенный с помощью делителя R16R17 компаратор DD4.3 разрешает ему это делать в зоне максимальной чувствительности.

Частота ГУН поступает на вход А смесителя (ключ DD5.4). На вход СО приходят от логического элемента DD4.1 и разностная f биений, и сформированный дифференцирующей цепью C10R9 (для лучшего звучания головных телефонов, уменьшения потребляемой мощности) короткий отрицательный импульс. В результате на выходе смесителя присутствует или промодулированная частота ГУН, или только частота биений. Причём переход с одного режима на другой схема выполняет автоматически. Переменный резистор R30 служит нагрузкой и регулятором громкости, а совмещённый с ним SA1 - выключателем электропитания.

Использование микросхем серии КМОП, операционных усилителей, работающих в микротоковом режиме, позволило сократить ток потребления до уровня 6 мА, сделав приемлемым использование батареи «Крона» в качестве источника электропитания.

Как и другие аналоги (включая опубликованные в «Моделисте-конструкторе» № 8"89 и 4"96), почти весь металлодетектор смонтирован на печатной плате из односторонне фольгированного стеклотекстолита. Поисковый генератор помещён в экранирующую коробку из жести. За габариты платы вынесены лишь регулировочные сопротивления R26, R27, R30, гнезда подключения источника питания и головных телефонов, а также рамка-датчик.

Печатная плата устройства

DD1 К561ЛА8; DA1-DA2 КР140УД1208; DD2 К561ТМ2; VT1-VT3 КП303А;
DD3 К176ЛП4; VT4 КТ3102Г; VD1 Д902; VD2-VD3 КД522

Топология печатной платы

Технология и тщательность изготовления рамки-датчика настолько важны для работоспособности всего металлодетектора, что требуют, видимо, более детального изложения. В качестве основы здесь использован жгут, составленный из одиннадцати 1100-мм отрезков провода ПЭВ2-1,2. Плотно обернув слоем изоленты, его втискивают в алюминиевую трубку, имеющую внутренний диаметр 10 мм и длину 960 мм. Полученной заготовке придают форму прямоугольной рамки 300x200 мм с закруглёнными углами.

Конец первого из проводов, помещённых в алюминиевом корпусе - электростатическом экране, последовательно припаивают к началу второго и так далее до образования своеобразной 11-витковой катушки индуктивности. Спайки изолируют друг от друга бумажной лентой и заливают эпоксидной смолой, исключая при этом появление короткозамкнутого витка за счёт самой согнутой в рамку трубки.

Рамка металлодетектора

Желательно здесь же предусмотреть любой закрытый высокочастотный разъём и подходящее (не металлическое) крепление для штанги-рукоятки, в качестве которой можно использовать одну-две секции от разборного удилища. Кабель, соединяющий рамку с блоком, лучше использовать коаксиальный, телевизионный, например, РК75.

Дроссель L2 поискового генератора (обозначение здесь и далее - согласно рис. 1 и в соответствии с принципиальной электрической схемой металлодетектора, опубликованной в предыдущем номере журнала) имеет 450 витков провода ПЭЛ1-0,01. Намотка - внавал на каркасе диаметром 4 и длиной 15 мм с ферромагнитным сердечником М600НН (можно применить подходящую контурную катушку от старого радиоприёмника). Индуктивность такого дросселя 1-1,2 мГн.

В приборе использованы конденсаторы КСО или КТК (С3, С4, С5), КЛС или KM (С1, С2, С6 - С13, С15), К50-6 или К53-1 (С14, С16, С17). Есть выбор и резисторов. В частности, для «подстроечников» R26, R27 подойдут СП5-2 или СП-3. То же самое можно сказать о переменном R30, только он должен быть совмещён с выключателем.

Все остальные резисторы - МЛТ-0,125 (ВС-0,125).

Цифровые МС можно заменить аналогами из хорошо зарекомендовавшей себя серии К176. DD1, DD3 - любые из того же ряда, лишь бы содержали требуемое количество инверторов.

Допускают замену и транзисторы. В качестве VT1 и VT2, например, подойдут КП303Б (-Ж). На месте VT3 приемлем КП303 или КП305 (буквенный индекс в конце наименования в данном случае роли не играет), а КТ3102Г (VT4) заменит КТ3102Е.

Кварц - из тех, что рассчитаны на 1,0-1,4 мГц. Выбор головных телефонов тоже не ограничен. Как свидетельствует практика, вполне подойдут ТОН-1 или ТОН-2. Варикап Д901 можно заменить на Д902. Диоды VD2 и VD3 КД522 (КД523) с любым буквенным индексом.

Для настройки собранного прибора потребуются осциллограф и...аккуратность в работе. Тщательно осмотрев весь монтаж, на схему подают электропитание. Затем проверяют ток потребления, который у правильно выполненной работоспособной конструкции должен составлять 5.5 - 6,5 мА. При выходе за указанные значения ищут и устраняют ошибки в пайке и т.д.

В функционировании образцового генератора убеждаются по наличию на выводе 1 микросхемы DD2 частоты, равной 0,5f кварцевого резонатора со скваженостью 2. Потом переходят к «поисковику.» В контрольную точку на печатной плате, где сходятся R3 и С8, подают половину напряжения питания, отсоединив при этом выход микросхемы DA2. И осциллографом, подключённым к стоку транзистора VT2, проверяют амплитуду выходного напряжения. Она должна быть от 1 В до 1,2 В. Если отклонение превышает 0,1 В. корректируют число витков в дросселе L2.

А с помощью конденсаторов С3 и С4 выставляют оптимальную частоту сигнала, равную 0.5f кварца Причём сам датчик должен располагаться не ближе двух метров от металлических предметов. При необходимости, подбирая R5, стремятся получить симметричный выходной сигнал на выводе 9 микросхемы DD3 (при этом смеситель должен выдавать сигнал разностной частоты с меандром, равным 2). Затем, установив изменением напряжения на варикапе частоту биений, равную 8-9 Гц, замеряют сигнал на выводе 6 интегратора DA1 - он должен быть «на грани ограничения снизу». Соответствующую же корректировку осуществляют подбором номинала у резистора R10.

Присоединив осциллограф к истоку транзистора VT3, проверяют изменение уровня напряжения в зависимости от частоты биений. Резисторами R16 и R17 добиваются, чтобы логический ноль на выходе компаратора (вывод 10 микросхемы DD4) появлялся только тогда, когда f биений станет выше 70 Гц.

ГУН подстраивают с помощью резистора R15 так, чтобы генератор начинал работать, когда сигнал интегратора «выходил из ограничения снизу». В дальнейшем это существенно упростит корректировку прибора перед работой, гак как минимальная частота ГУН и будет соответствовать настройке металлодетектора на максимальную чувствительность.

Восстановив на печатной плате специально отпаянное ранее соединение R3 и С8 с DA2, переходят к заключительному этапу отладки прибора. Движок «подстроечника» R26 поворачивают в крайнее(«плюсовое»)положение, что будет соответствовать максимальной частоте биений (причём f поискового генератора > f образцового.

Затем, медленно вращая движок в обратную сторону, начинают контролировать сигнал на выводе 6 DA1. Замечают, как (при определённом положении движка R26) на экране осциллографа вырисовывается момент попадания сигнала в зону захвата АПЧ.

Продолжая поворот ручки подстроечного резистора R27, добиваются частоты биений, равной 10 Гц, одновременно проверяя работу АПЧ (по стремлению сигнала вернуться в исходное состояние).

Движки резисторов R26, R27 необходимо перемещать медленно, учитывая большую инерционность АПЧ. При этом в головных телефонах будут прослушиваться минимальная частота ГУН и слабые щелчки с f биений. В некоторых случаях может возникнуть эффект «плавания» звука относительно некоторого фиксированного состояния. В этом случае необходимо более точно подобрать соотношение резисторов R23, R24 или уменьшить номиналы R19, R20.

Как уже отмечалось, электронную часть металлодетектора (а это почти и есть весь прибор) можно смонтировать в любом подходящем корпусе, закреплённом на ручке. Необходимо позаботиться, чтобы поисковая рамка-датчик, а также соединительные провода были жёстко закреплены относительно друг друга. Ведь даже незначительные вибрации этих деталей, возникающие при передвижении оператора, способны породить ложный сигнал (особенно при максимальной чувствительности схемы и недостаточном опыте работы с прибором). По той же причине лопатку следует носить за спиной штыком вверх (подальше от рамки-датчика). А металлические наконечники на шнурках ботинок оператора вообще недопустимы. Привносимые ими помехи грозят свести на нет все усилия сверхчуткого прибора отыскать в земле то, с чем она столь неохотно расстается.

Работа с металлодетектором мало чем отличается от действий с современным ручным миноискателем. Конечно же, столь точным приборам нужна юстировка. В нашем конкретном случае - это поворот движка подстроечного резистора R26 в крайнее («плюсовое») положение, a R27 - в среднее. Подав на аппаратуру электропитание, вращают ручку регулировки R26 в противоположную сторону до появления в головных телефонах сигнала ГУН. После этого подстроенным резистором R27 устанавливают требуемую чувствительность. А с помощью R26 произвольно выставляют (при работе с прибором в режиме биений «один к одному») f биений в пределах 200-300 Гц.

АПЧ и ГУН, по сути, отключены, поэтому поиск ведут как обычно. Для более четкого определения места расположения мелких предметов рамку-датчик подносят к зоне поиска либо горизонтально (закруглённым углом вперёд), либо под наклоном 45-90° к исследуемой поверхности (с явным позиционным преимуществом одной из боковин рамки).

Ю. СТАФИЙЧУК, Республика Молдова

Характеристика и принцип работы импульсных металлоискателей

Обновлено 07.10.2018

Импульсный металлоискатель (Pulse metal detector или – англ.) самый чувствительный среди всех детекторов, реагирует на любые металлы, не отличает ферромагнетики от диамагнетиков. Поисковые особенности позволяют детектору обнаружить золото и золотые самородки в щелочных условиях и при экстремальной температуре грунта (или породы), которые слишком сложны для устройств VLF / TR . Он также позволяет обнаруживать металлические руды, содержащиеся в камнях и глине.

Импульсные металлодетекторы незаменимы при поиске на прибрежной зоне, под водой и на высоко минерализованном грунте. Работа приборов не зависит от влияния земли и воды. Они одинаково успешно работают под водой и на суше. Поэтому технология PI используется в подводных металлоискателях . Приборы имеют хорошие результаты при поиске на песчаных и мокрых пляжах. Глубина обнаружения объектов в земле и соленой воде больше по сравнению с VLF металлоискателями.

Импульсные металлоискатели лучше, чем VLF металлоискатели ведут себя вблизи линий электропередач, а также передающих антенн систем мобильной связи. Обслуживать этот тип металлоискателей довольно просто. Как правило, они оснащаются единственным регулятором чувствительности, хотя более продвинутые модели могут иметь и другие органы управления.

Приборы имеют высокое энергопотребление, для работы нужны мощные аккумуляторы. Обычных батарей хватает не более чем на 12 часов непрерывной работы. Если используются щелочные батареи, то длительность работы увеличивается.

Технология Pulse Induction не является универсальной, а недостатки импульсных металлоискателей ограничивают их возможности. В настоящее время лучшими металлоискателями для всех целей являются приборы использующие технологию VLF (очень низкие частоты). Однако технология PI может иметь дальнейшее развитие и в будущем могут быть разработаны новые детекторы с новыми возможностями.

Устройство и принцип работы импульсных металлоискателей

Импульсные металлоискатели имеют простую конструкцию. Прибор состоит из генератора импульсов, поисковой катушки , блока усиления сигнала, анализатора и блока индикации. Конструкция катушки также проста. Она является передающей и приемной одновременно. Это значительно уменьшает вес прибора.
Поисковая катушка воздействует на грунт пульсирующим электромагнитным полем. Излучение импульсов происходит с частотой 50 …400 Гц и энергией около 100 Вт. Вследствие магнитной индукции на поверхности металлического объекта, находящегося в зоне действия поля возникают вихревые токи.

Эти токи являются источником вторичного сигнала (отраженный импульс, отклик). В перерывах между импульсами, приёмник принимает отклик, который усиливается и обрабатывается анализатором и далее выводится на блок индикации.

Время затухания отраженного импульса больше времени затухания излученного импульса (вследствие явления самоиндукции). Разница во времени является параметром для анализа и регистрации. Затухание вихревых токов от грунта или воды происходит намного быстрее и не улавливается прибором. Именно поэтому импульсные металлодетекторы эффективно работают под водой, на минерализованных, соленых и влажных грунтах.

Related tags : импульсные металлоискатели, импульсные металлодетекторы, технология PI, Pulse Induction, принцип работы импульсных металлоискателей, устройство импульсных металлоискателей, как работает импульсный металлоискатель

Передатчик

Передающая часть состоит из генератора прямоугольных импульсов на микросхеме IC1 — NE555 (отечественный аналог КР1006ВИ1) и мощного ключа на транзисторе Т1 — IRF740 (IRF840). Для его раскачки стоит транзистор Т2 — 2N3904. Нагрузкой Т1 является поисковая катушка L1. Для подстройки длительности и частоты импульса подбираем сопротивление R10 и R11 соответственно.

Приёмник

Приемный узел собран на микросхеме IC2 — TL074. В её состав входит четыре малошумящих операционных усилителя. По входу первого каскада усилителя стоит ограничитель сигнала на диодах VD1,VD2, включенных встречно-параллельно. На выходе последнего усилителя включен светодиод, загорающийся при наличии металла в поле катушки.

После первого каскада усиления стоит пассивный фильтр, вырезающий полезную часть приходящего импульса.

На микросхеме IC3 — NE555 собран звуковой генератор, срабатывающий вместе со светодиодом при появлении металла. Управляет генератором транзистор T3 — 2N3906.

Диод VD3 IN4001 совместно с предохранителем (0,5А) нужны для защиты схемы от переполюсовки питания.

Поисковая катушка

Катушка L1 (250μH) намотана на оправке 180 — 200 мм и содержит 27 витков провода ПЭЛШО в лаковой и шёлковой изоляции, если такого нет, то ПЭВ (ПЭЛ, ПЭТВ и др.), диаметром 0,3 — 0,8 мм. Провод можно взять с трансформаторов, дросселей, отклоняющей системы или петли размагничивания негодного цветного телевизора. Катушку можно намотать на круглой оправке, например, ведре или кастрюле. Затем снять с оправки и обмотать несколько слоёв изоленты. Для изготовления катушки можно использовать пластмассовую крышку от ведра или пяльцы для вышивания, в которые очень хорошо укладывается провод.

Каркас катушки НЕ должен содержать металла! Сама катушка в этом типе металлоискателя тоже НЕ обматывается фольгой!

Провод, соединяющий катушку и плату должен быть толстым и желательно экранированным, а также не иметь соединений и разъёмов. В импульсе ток достигает больших значений и всё выше сказанное влияет на чувствительность прибора.

Настройка металлоискателя

Настройка этого металлоискателя намного сложнее, чем рассматриваемого ранее на одной микросхеме К561ЛА7.

Паять плату чистой канифолью или спирто-канифольным раствором. После пайки зубной щёткой смыть со спиртом остатки канифоли. После монтажа ОБЯЗАТЕЛЬНО ещё раз проверьте правильность монтажа согласно принципиальной схеме.

Правильно собранный металлоискатель работает сразу, но чтобы добиться максимальной чувствительности понадобится не мало усилий и терпения, а также не помешали бы для настройки осциллограф и частотомер. Также нужен будет мультиметр. При включении проконтролируйте ток, потребляемый прибором. При 9В — 30 мА, при 12В — 42мА .

Для питания устройства лучше взять аккумуляторы. Я взял из старой батареи от ноутбука. 4 шт по 3В = 12В.

Сначала рекомендуется намотать катушку около 30 витков, затем настроить максимальную чувствительность резисторами. В наушниках необходимо добиться R6 и R16 РЕДКОЕ ПОТРЕСКИВАНИЕ . Затем смотать 2 витка — далее настроить до потрескивания. Например, смотал 2 витка и пробовать первый каскад регулировать усиление (R6), затем прогнать регулировку фильтра (R14, C8), затем регулировку усиления второго каскада (R20), третьего (R22).

Контролировать пока можно на звук, на светодиод не обращать внимания. При сматывании витков ток будет расти, а вот чувствительность нужно «поймать» максимальную. Если много витков — она будет слабая и при малых витках тоже слабая. Найти нужно «золотую середину».

Резисторы R6 — порог усиления первого каскада (таблица напряжений ниже)совместно с регуляторами «Фильтр» и «Усиление» добиваемся максимальной чувствительности (в наушниках редкое потрескивание! ) и R24 — порог срабатывания звукового генератора , для того чтобы светодиод и тон генератора в наушниках появлялись одновременно. Регуляторами «Фильтр» и «Усиление» устанавливаем порог начала свечения светодиода.

Мультиметром можно померить напряжения (В) на выводах ОУ (без присутствия металла в поле катушки /с присутствием металла) (питание металлоискателя +12В):

IC1 (NE555)

IC2 (TL074)

  1. 0 / 4,1
  2. 0,8 / 4,3
  3. 0,8 / 4,3
  4. 0,1 / 4,3
  5. 4 / 3,6
  6. 4,0 / 3,6

IC3 (NE555)

  1. 7,1 / 6,3
  2. 11,5 / 10,1
  3. 7,1 / 6,3
  4. 7,1 / 6,3

Если есть Осциллограф, то можно посмотреть:

Работу передатчика
  1. частоту генератора на IC1 выв.3 (подстройка R11 — 120 — 150Гц);
  2. длительность управляющего импульса на затворе Т1 (подстройка R10 — 130-150 мкс).
Работу приёмника

Прохождения импульсов передатчика в контрольных точках приёмника (выходы операционных усилителей Вывода 1, 14, 8 и 7.

На выходе микросхемы звукового генератора (выв. 3) появляется тон, частотой около 800 — 1000 Гц. Частота тона определяется конденсатором С13 и сопротивлением R27.

Для увеличения громкости на выходе микросхемы стоит транзисторе Т4 — 2N3906. Громкость в наушниках устанавливается сопротивлением R31, включенным последовательно с наушником.

Печатная плата металлоискателя «Винтик»

Схема металлоискателя собрана на печатной плате из фольгированного стеклотекстолита по приведённому рисунку выше.

Расположение деталей на плате

Работа с металлоискателем

При включении регуляторами R14 «Фильтр» и R16 «Усиление» устанавливаем порог начала свечения светодиода. Настройка на максимальную чувствительность: находим такое положение, при котором в динамике едва прослушиваются щелчки!

Принципиальная схема доработанного импульсного металлоискателя «VINTIK-PI»

Схема отличается от предыдущей:

  1. Добавлением вместо фильтра узла задержки на микросхеме NE555 и ключа на полевом транзисторе BF245. Длительность импульса регулируется подстроечным резистором от 50 до 100 мкс. В предыдущей версии нужная часть импульса вырезалась пассивным фильтром на R9, R12, R14, C8, C9, C10 теперь это делает узел задержки с ключом (NE555 и BF245). При этом решении упрощается задача настройки фильтра металлоискателя, а также возрастает чувствительность на 5-7 см, ток потребления возрос до 65 мА (в зависимости от катушки).
  2. Добавлена схема контроля питания на свободном элементе (IC 2.2) TL074. При понижении питания ниже 12В загорается светодиод. С 12 В до 10 В схема ещё работоспособна с небольшой корректировкой регулятора «усиления». Чувствительность при понижении питания тоже снижается.
  3. Изменена схема регулировки громкости. Теперь можно подключать к выходу как наушники, так и маломощный динамик. При подключении наушника динамик отключается.
  4. В данной схеме используется поисковая катушка «корзиночного типа» , состоящая из трёх витков компьютерного кабеля «витая пара» (без экрана). С её помощью удается получить большую чувствительность прибора.

Обсудить предложенные металлоискатели можно на .

Если у Вас желание собрать схему, но нет необходимых деталей Вы можете



Читайте также: