Программа поток расчет отопления. Поток программа для расчета систем отопления, охлаждения теплоснабжения калориферов и оборудования

/ Oventrop CO - программа для расчета систем отопления

Oventrop CO - программа для гидравлического
расчета систем отопления (охлаждения)

Программа Oventrop CO предназначена для графической помощи при проектировании новых одно - и двухтрубных систем центрального отопления, регулировании существующих систем (например, в утепленных зданиях), а также при проектировании сети трубопроводов в системах охлаждения с возможностью применения гликоля как холодоносителя.

Расчеты систем могут быть выполнены в следующих вариантах:

1. проектирование новых систем на основе подбора трубопроводов, отопительных приборов, арматуры и предварительных настроек;
2. регулирование существующих систем на основе подбора мощности имеющихся отопительных приборов для нужд отапливаемых помещений;
3. проектирование новых фрагментов оборудования систем и регулирование имеющихся фрагментов. Это объединение двух предыдущих вариантов.

Во всех вариантах расчетов программа подбирает настройки арматуры с предварительной регулировкой.

Система центрального отопления должна осуществляться при следующих условиях:
- система с принудительной подачей (с помощью насоса),
- двухтрубная или однотрубная система трубопроводов
- теплоносителем или холодоносителем может быть вода, или водный раствор гликоля этиленового или пропиленового
- разводка нижняя, верхняя либо смешанная,
- отопительные приборы конвекционные,
- подпольные отопительные контуры (подпольное отопление).
- автоматические воздуховыпускные вентили (не может быть сети стравливающей воздух),
- обычные либо термостатические вентили для отопительных приборов,
- предварительная регулировка при помощи вентилей с предварительной настройкой либо шайб,
- стабилизация разницы давления с помощью стабилизаторов давления,
- возможность применения регуляторов расхода,
- широкий диапазон типов труб, отопительных приборов и арматуры,
- максимальное число типов труб в оборудовании - выбраны 4 типа из всех доступных в каталоге.

Обслуживание программы

Эта программа, использующая среду MS Windows, дружественна в обслуживании, стандартна в принципах сотрудничества с другими программами, значительно облегчает работу лицам, знающим Windows. В программе применено много решений, облегчающих и улучшающих работу. Наиважнейшие из них это:
- графический процесс ввода данных и представление итогов расчетов на схеме,
- развитая контекстная справочная система, вызывающая информацию, как об отдельных командах программы, так и подсказку относительно вводимых данных,
- многооконная среда, позволяющая одновременно просматривать много типов данных, итогов и т.д.,
- простая совместная работа с принтером и плоттером, а также функция предварительного просмотра страниц перед печатью и выводом на плоттер,
- богатая диагностика ошибок и также функция их автоматического поиска (как в таблице, так и на схеме),
- быстрый доступ к каталожным данным труб, отопительных приборов и арматуры.

Ввод данных

Данные вводятся в графической форме на схеме. Необходимая информация об нарисованных элементах вводится в таблицы, связанные со схемой. Благодаря этому существует возможность правки как одиночных трубопроводов, отопительных приборов, арматуры, так и целых выделенных групп. С каждым вводимым элементом связана система контроля за правильностью, а также справочная система, позволяющая получить информацию о вводимой величине или вызывающая соответствующие каталожные данные.

С целью улучшения ввода данных программа снабжена:
- возможностью одновременного редактирования большого числа элементов оборудования,
- возможностью пользоваться готовыми блоками,
- функцией размножения произвольных фрагментов рисунка по горизонтали (системы поквартирные) и по вертикали (традиционная вертикальная разводка) с одновременной нумерацией помещений и участков,
- возможностью определения неограниченного числа собственных блоков, состоящих из произвольных фрагментов рисунка,
- быстрым доступом к справочной информации, связанной с вводимыми величинами.
- системой раскрывающихся кнопок, улучшающей доступ к наиболее часто используемым элементам оборудования,
- функцией динамичного связывания данных рисунка с соответствующими данными в таблице,
- справочной системой помощи, поддерживающей соединение трубопроводов, арматуры, отопительных приборов и других элементов оборудования.

Благодаря графическому вводу данных, программа автоматически распознает подсоединение трубопроводов, отопительных приборов и арматуры, а также приписывает трубопроводы, отопительные приборы к зоне помещения. Редактирование данных в табличной форме дает возможность для индивидуальной установки параметров всех одновременно выделенных элементов рисунка. Динамическая связь рисунка с таблицами данных действует так, что актуально редактируемый в таблице элемент будет выделен на схеме.

Поставляемая с программой библиотека типовых фрагментов рисунка (блоков) таких как этажестояк, элементов поквартирной и распределительной разводки, дает возможность быстро создавать схему. Дополнительно пользователь может заранее определять практически неограниченное число собственных блоков, состоящих из произвольных фрагментов рисунка. Такие блоки могут быть использованы в последующих проектах.

Благодаря функции размножения произвольных элементов рисунка, например, можно вводить фрагмент схемы оборудования на целом этаже (очередные стояки или поквартирная разводка), а затем автоматически создавать схему и данные для последующих этажей.

Гидравлические расчеты

Программа предоставляет возможность для выполнения полностью всех гидравлических расчетов системы, в рамках которых:
- подбираются диаметры трубопроводов,
- определяются гидравлические сопротивления циркуляционных колец, с учетом гравитационного давления, связанного с охлаждением воды в трубопроводах и потребителях тепла,
- определяются потери давления в системе,
- уменьшается избыток давления в циркуляционных кольцах путем подбора предварительных настроек вентилей с двойной регулировкой либо подбором диаметра отверстий дроссельных шайб,
- учитывается необходимость соответствия гидравлического сопротивления участка с потребителем тепла (dPgmin),
- подбираются настройки регуляторов разницы давления, устанавливаемых в местах выбранных проектировщиком (основание стояков, разветвления и т.д.),
- учитываются требуемые авторитеты термостатических вентилей,
- анализируется расход воды в проектируемом оборудовании.

Тепловые расчеты

В рамках тепловых расчетов программа реализует следующие функции:
- определяются теплопоступления от трубопроводов оборудования, проведенных через отдельные помещения,
- рассчитывается охлаждение теплоносителя в трубопроводах,
- определяются величины отопительных приборов,
- подбираются соответствующие потоки теплоносителя на подаче к имеющимся потребителям тепла, принимая во внимание его охлаждение в трубопроводах, а также теплопоступления от трубопроводов. Программа не корректирует поток воды, подходящей к отопительным приборам, в однотрубной системе.
- учитывается воздействие охлаждения в трубопроводах на величину гравитационного давления в циркуляционных кольцах, а также на мощность потребителей тепла.

Контроль данных и итогов расчетов

Во время ввода данных программа проводит текущий контроль за их правильностью. Это позволяет значительно ограничить число ошибок, возникающих при вводе данных. В процессе расчетов проводится полный контроль корректности данных, который включает в себя:
- проверку правильности рисунка,
- проверку диапазона отдельных данных (номера - символы помещений, трубопроводов, каталожные символы и т.д.),
- контроль за соединением участков в оборудовании (неподключенные трубопроводы, неправильное соединение трубопроводов и т.д.),
- проверку связи отопительных приборов с помещениями (отсутствие отопительного прибора в помещении, ненужный отопительный прибор и т.д.),
- проверку правильности размещения арматуры.

Кроме этого, в итогах расчетов проверяются:
- скорость потока теплоносителя в трубопроводах,
- дефицит и избыток тепловой мощности отопительных приборов и помещений,
- авторитеты термостатических вентилей,
- отсутствие давления в циркуляционных кольцах, вызванное отсутствием или недостатком регулирующей арматуры.

В результате контроля данных и итогов расчетов создается список обнаруженных ошибок, в котором содержится информация о типах ошибок и о месте их возникновения. Программа снабжена механизмом быстрого поиска места, в котором появилась ошибка (автоматический поиск таблицы, строки и столбца с ошибочными данными, а также показ ошибочного элемента на схеме).

Представление итогов

Итоги расчетов представлены как в графической, так и в табличной формах. Формат рисунка и внешний вид этикеток отдельных элементов оборудования может быть произвольно модифицирован (выбор демонстрируемой величины, цвет, размер шрифта и т.д.). В версии 3.0. имеется новая возможность нанесения итогов расчетов на поэтажные планы.

Содержимое всех таблиц может быть отформатировано (выбор показываемых столбцов и строк, выбор размера шрифта) и отсортировано согласно произвольному ключу. Итоги расчетов в виде схемы и планов могут быть распечатаны на плоттере или принтере. Пользователь может выбрать масштаб рисунка и воспользоваться предварительным просмотром, чтобы проверить, как схема или план будет распечатана на бумаге. В случае, если рисунок не помещается на одном листе бумаги, то программа печатает схему или план отдельными фрагментами, которые потом можно склеить в одно целое. Благодаря этому, используя даже самый простой принтер в формате А4, можно получить большой рисунок.

TEPLOOV это в TEPLOOV входит программа расчета отопления ПОТОК, программа расчета теплопотерь RTI и программа расчета вентиляции VSV

В состав комплекса входит программа ПОТОК, программа RTI, программа VSV и еще несколько небольших специализированных приложений. Каждый компонент можно приобрести отдельно от других.

Программа RTI

Программа RTI обеспечивает расчет тепловых потерь здания, в т.ч. на инфильтрацию. Выполняет расчет энергетического паспорта здания . Включает БД климатологии.

Программа RTI автоматизирует расчет следующих параметров:

  • Рассчитывается сопротивление теплопередаче ограждающей конструкции, в том числе многослойной;
  • Подбирается толщина изоляции стен;
  • Проверяется температура на границах слоев;
  • Определяется "точка росы" внутри помещений;

Программа RTI (демонстрация проектирования) В вашем браузере отключен JavaScript


Программа VSV реализует аэродинамический расчёт систем вентиляции и аспирации, а также пневмотранспорта. Расчет систем вентиляции выполняется на основе описания систем вентиляции и требований к ним (скорость в воздуховодах). Рассчитываются приточные или вытяжные системы вентиляции с круглыми или прямоугольными воздуховодами. Системы аспирации и пневмотранспорта только вытяжные с круглыми воздуховодами.

Программа VSV поддерживает решение следующих задач:

  • определение размеров сечений по заданным скоростям и расходам, потерь напора по участкам и ветвям, давления в начале и конце линейных элементов системы - воздухопроводов;
  • определение потерь напора по участкам и ветвям по заданным размерам сечений воздуховодов и расходам;
  • участках сечений воздуховодов и дополнительных потерь давления;
  • перенос диафрагм на сборные участки.
Подробнее о расчете системы вентиляции и аспирации

Программа ПОТОК является наиболее востребованной частью комплекса TEPLOOV , выполняющей расчет в соответствии с СП . Она выполняет расчет системы отопления зданий, включая 1-2 трубные и коллекторные системы теплохолодоснабжения или центрального водяного отопления с постоянным или скользящим перепадом температур (в случае присоединения потребителей по однотрубной системе) в зданиях любого назначения. Программа ПОТОК непрерывно совершенствуется. Расширяется БД комплектующих, исправляются ошибки и добавляются новые функции. Именно поэтому так важно своевременно обновлять программу. На этой странице ниже представлены изменения за последние 5 лет.

Тёпло/холод передаётся в помещения местными нагревательными приборами, калориферами, фанкойлами, с организованным и неорганизованным учётом тепла в системе.

Программа ПОТОК (демонстрация проектирования) В вашем браузере отключен JavaScript

VIBROS

Модуль VIBROS является частью комплекса TEPLOOV, обеспечивающим расчет концентрации вредных веществ в атмосфере из-за выброса котельных по унифицированным программам расчета загрязнения атмосферы (УПРЗА) типа Эколог.

STOL

Модуль STOL комплекса TEPLOOV предназначен для расчета воздухообмена предприятий общественного питания, расчет, подбор и анализ работы кондиционера.

BOLER

Модуль BOLER ориентирован на тепловые расчёты бойлерных установок, включающих скоростные водо-водяные односекционные теплообменники, пароводяные, двухходовые и четырехходовые ПП1 и ПП2

KALOR

Программа предназначена для подбора индивидуальных калориферных установок, обеспечивающих подогрев заданного количества воздуха на требуемый перепад температур для: секций подогрева приточных камер; воздушно-тепловых завес; пропарочных камер.

Купить TEPLOOV

ООО "Хайтек" поставляет программные продукты комплекса TEPLOOV, являясь региональным дилером компании ЗАО "ПОТОК". Рабочая версия программ передается по гарантийному письму для тестирования на срок до 30 дней. В стоимость программного обеспечения входит годовая техническая поддержка. В течение этого периода клиент бесплатно получает все обновления программ.

Программы комплекса TEPLOOV непрерывно обновляются. Расширяется БД приборов и материалов, вводятся изменения в соответствии с выходом новых СНиП и СП, вводятся новые функции и исправляются ошибки. В связи с этим ООО "Хайтек" рекомендует оплачивать обновление программ (апгрейд). Ниже ссылки на изменения, введенные в программу ПОТОК. программу VSV и программу RTI за последние 4 года.


Назначение и область применения: Программа ПОТОК предназначена для выполнения теплогидравлического расчета 1-2 трубных, коллекторных (плинтусных, лучевых) систем теплохолодоснабжения или центрального водяного отопления теплоносителем - вода или раствор, с постоянным или скользящим перепадом температур (в случаи присоединения потребителей по однотрубной системе) в зданиях любого назначения с централизованным или раздельным теплоучётом.
Тёпло/холод передаётся в помещения местными нагревательными приборами, калориферами, фэнкойлами, с организованным и не организованным учётом тепла в системе. Сложные по конфигурации системы (однотрубные, бифилярные и двухтрубные стояки и пр.) можно разделять на отдельные расчётные блоки с последующим автоматическим объединением с целью гидравлической увязки и получения общей спецификации оборудования в формате MS Word и AutoCAD
Программа дает возможность рассчитывать системы отопления последовательно - соединенные по теплоносителю, системы с предвключенными нагревательными приборами.
Универсальность: Производители запорно-регулировочной арматуры Европы вместе со своею продукцией, для успешного её продвижения, предлагают собственные программы расчёта систем и подбора арматуры. Программы адаптированы под наши нормы. Но позволяют использовать в проекте только изделия своей фирмы и только для узкого спектра назначения зданий и конструктивных особенностей систем. Как правило, это двухтрубные системы. Заказчики проектно-сметной документации при смене партнёра по поставкам оборудования зачастую ставят проектные организации перед выбором: иметь в своём арсенале индивидуальные и освоенные программные системы всех потенциальных поставщиков или освоить только одну на все возможные проектные ситуации. И этой программой является ПС «ПОТОК».

Может поставлятся как в составе других программа комплекса TEPLOOV (ТЕПЛООВ), так и отдельно от программ комплекса TEPLOOV (ТЕПЛООВ)


Дополнительные функции:

Проектируемые системы могут быть:
. Отопления;
. Теплые полы;
. Холодоснабжения;
. Теплоснабжения (калориферов, технологического оборудования);
. С ручным и автоматическим регулированием расхода тепла и гидравлической устойчивости. С установкой балансовых клапанов, термостатических вентилей;
. Отопление местными приборами совмещённое элементами с теплоснабжением, теплыми полами;
. Внутриплощадочные теплосети;

По способу учёта затрат на отопление
а) Не организованный учёт тепла
б) Поквартирная - каждая квартира (офис, магазин и т.п.) имеет свой источник тепла и гидравлически системы отопления между собой не связаны - считать отдельно без объединения.
в) Системы с раздельным учётом тепла по владельцам (квартир, офисов, магазинов и т.п.) - считать отдельно и объединить.

По присоединению нагревательных приборов при формировании стояков:
а) однотрубные;
б) двухтрубные;
в) бифилярные;

По расположению магистралей:
а) с верхней разводкой;
б) с нижней разводкой с обычными и П - Т- образными стояками;
в) с "опрокинутой циркуляцией";
г) с единой нижней магистралью с последовательным присоединением П. - образных стояков;

По направлению движения воды:
а) вертикальные или горизонтальные;
б) с тупиковым движением в магистралях;
в) с попутным движением в магистралях;
г) лучевые:
д) коллекторные;
е) с бифилярным движением в приборах;

По приборным (односторонним или двухсторонним) узлам:
а) проточные;
б) регулируемые;
в) с термостатами Danfoss , HERZ , Far , Watts , Comap , IMI (Heimeier, Tour Andersson ) Oventrop и др.
г) с подмешивающими модулями для тёплых полов Far , Watts , Oventrop
д) проточно-регулируемые;
е) с редукционными вставками.

По теплоносителю:
а) сетевая перегретая вода от ТЭЦ (с подбором элеватора);
б) местный источник тепла;
в) незамерзающие растворы;
По источнику, побуждающему циркуляцию:
а) насосные;
б) гравитационные;

B системе отопления могут быть использованы нагревательные приборы прошлых лет, выпускаемые промышленностью СНГ или поставляемые фирмами Италии, Германии, Чехии и др. База приборов постоянно пополняется автором, в том числе и по материалам, предоставляемых пользователями.
Кроме того, система отопления местными нагревательными приборами может быть совмещена с теплоснабжением калориферов и/или электрических калориферов типа FC-205C - FC-805C, теплоснабжением технологического оборудования. При этом осуществляется совместный расчёт системы, готовятся необходимые проектные материалы.

Как запорно-регулирующей арматуры в узлах нагревательных приборов используются краны двойной регулировки, трехходовые краны, термостаты и вентили.
Рекомендуется при конструировании новых систем в обязательном порядке у приборов устанавливать термостаты, на стояках - автоматические балансовые клапаны. Это позволит избежать установки дроссель-шайб, устранить огрехи конструирования, расчёта и монтажа, обеспечить экономию тепла за весь отопительный период, что очень быстро перекроет некоторое увеличение капитальных затрат. Использование двухтрубной разводки также приводит к значительному сокращению эксплуатационных затрат.

Расчёт систем отопления выполняется с учётом дополнительных потерь тепла за счет:
а) размещения приборов у наружных стен;
б) остывания воды в неизолированных магистральных трубопроводах;
в) за счет округления поверхности нагрева приборов.

В связи с этим, для частичного возмещения дополнительных потерь тепла проектируемой системой, предусматривается увеличение расчётного количества тепла (теплоносителя) на вводе.

Диаметр любого участка может быть задан , либо определен расчетом .
Диаметры трубопроводов может быть определён программой не менее указанного пользователем.
При подборе диаметров магистралей предусмотрено соблюдение условия телескопичности.

Справочно-техническая информация, необходимая для решения задачи, включает в себя сортамент разнообразных труб, базу нагревательных приборов, теплотехнические данные запорно-регулирующей арматуры.
Вся справочно-техническая информация вынесена за пределы программы и сформирована в библиотеку технической информации с возможностью постоянной корректировки по мере освоения выпуска промышленностью новых изделий и материалов.

При проектировании систем с попутным движением теплоносителя в ветках, со стояками на 1-2 этажа, с резко разнонагруженными стояками в системе и т.п. целесообразно подключать блок установки шайб на магистралях веток, если не используются автоматические балансовые клапаны. Программа настроена на проектирование без установки шайб на магистралях.

Входные данные
Данные о геометрии системы, нагрузки на приборы, информация о поставщиках оборудования и принятой номенклатуре изделий, материал труб стояков, магистралей. Ввод данных производится в очень простой и продуманной форме. ()

Выходные данные

Все расчётные характеристики системы в табличной форме для внесения на планы и схемы, автоматическое формирование паспорта и спецификации оборудования системы в формате Word.

Комплект поставки
Программа, программная документация, на компакт-диске (CD), ключ электронной защиты (сетевой или локальный вариант)..

Программа «ПОТОК»Расчёт систем отопления
Пять шагов описания
системы

Пять шагов описания системы

Шаг № 1
Форма
«Общие данные»
Указывается
информация о
системе в целом –
материал труб,
параметры
теплоносителя и пр.

Пять шагов описания системы

Шаг № 2.
На форме:
«Характеристика узлов»
создаются все возможные
сочетания обвязки
потребителей.
Это может быть:
отопительный прибор,
ранее посчитанная система,
калорифер, греющий пол,
фэнкойл и т.п.

Пять шагов описания системы

Шаг № 3.
Описание стояков системы.
Стояк формируется из этаже –
стояков (для вертикальных – в
пределах этажа, для
горизонтальных – ширина
помещения). Обязательно
фиксируется соответствие этаже стояка узлу отопительного прибора
(потребителя) созданного на форме
«Характеристика узлов».
Это позволяет существенно
сэкономить время и труд на
описание стояков системы, и в
дальнейшем, при необходимости
корректировки, оперативно
заменить прибор, изменить
арматуру и конструкцию узла.

Пять шагов описания системы

Шаг № 4.
Описание веток системы.
В таблице формируются ветки
из стояков по ходу движения
воды.
Первый стояк, по ходу движению
воды, является номером ветки, а
магистрали перед стояками ветки
получают номера стояков.
За счёт этого приёма не
требуются дополнительные
обозначения – резко
сокращается информация о
расчётных участках.
И как следствие, простота ввода
и анализа данных.

Пять шагов описания системы

Шаг № 5.
Описание магистралей.
Если ветка не одна тогда, в
этой таблице, описывается
движение теплоносителя от
Узла Управления к веткам.
В момент заполнения
формируется
принципиальная схема, для
визуального анализа
геометрии системы.

Ваша схема готова к расчёту!!!

Систему любой сложной конфигурации пятью
шагами представить понятной компьютеру
доступно каждому!
Сложные системы с не стандартными проектными
решениями удобно разбивать на более мелкие
и рассчитывать раздельно с использованием
«файла обмена», затем объединять в один
расчёт с целью получить полную
гидравлическую увязку и спецификацию.
Метод разделения позволяет экономить время,
легко контролировать подачу данных,
исключить ошибки и неточности.

Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы). Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.

Перед началом гидравлических расчётов выполняют:

  • Сбор и обработку информации по объекту с целью:
    • определения количества требуемого тепла;
    • выбора схемы отопления.
  • Тепловой расчёт системы отопления с обоснованием:
    • объёмов тепловой энергии;
    • нагрузок;
    • теплопотерь.

Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.

Для расчёта гидравлики с помощью программ требуется знакомство с теорией и законами сопротивления. Если приведенные ниже формулы покажутся вам сложными для понимания, можно выбрать параметры, которые мы предлагаем в каждой из программ.

Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.

В этой статье:

Что такое гидравлический расчёт

Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:

  • диаметр и пропускную способность труб;
  • местные потери давления на участках;
  • требования гидравлической увязки;
  • общесистемные потери давления;
  • оптимальный расход воды.

Согласно полученным данным осуществляют подбор насосов .

Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя ().

Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).

Комплексные задачи — минимизация расходов :

  1. капитальных – монтаж труб оптимального диаметра и качества;
  2. эксплуатационных:
    • зависимость энергозатрат от гидравлического сопротивления системы;
    • стабильность и надёжность;
    • бесшумность.

Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений

Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:

  1. по удельным потерям (стандартный расчёт диаметра труб);
  2. по длинам, приведённым к одному эквиваленту;
  3. по характеристикам проводимости и сопротивления;
  4. сопоставление динамических давлений.

Два первых метода используются при неизменном перепаде температуры в сети.

Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.

Расчет гидравлики системы отопления

Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.

Вынесите данные в эту таблицу:

Шаг 1: считаем диаметр труб

В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:

1а. Оптимальная разница между горячим (tг) и охлаждённым(tо) теплоносителем для двухтрубной системы – 20º

  • Δtco=tг- tо=90º-70º=20ºС

1б. Расход теплоносителя G, кг/час — для системы.

2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.

Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.

3. Расчётная скорость теплопотока – Q, Вт.

Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):

Формула для расчёта скорости теплопотока

4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С

5. Параметры участков:

Участок Длина участка, м Число приборов N, шт
1 - 2 1.78 1
2 - 3 2.60 1
3 - 4 2.80 2
4 - 5 2.80 2
5 - 6 2.80 4
6 - 7 2.80
7 - 8 2.20
8 - 9 6.10 1
9 - 10 0.5 1
10 - 11 0.5 1
11 - 12 0.2 1
12 - 13 0.1 1
13 - 14 0.3 1
14 - 15 1.00 1

Для определения внутреннего диаметра по каждому участку удобно пользоваться таблицей.

Расшифровка сокращений:

  • зависимость скорости движения воды — ν, с
  • теплового потока — Q, Вт
  • расхода воды G, кг/час от внутреннего диаметра труб
Ø 8 Ø 10 Ø 12 Ø 15 Ø 20 Ø 25 Ø 50
ν Q G v Q G v Q G v Q G v Q G v Q G v Q G
0.3 1226 53 0.3 1916 82 0.3 2759 119 0.3 4311 185 0.3 7664 330 0.3 11975 515 0.3 47901 2060
0.4 1635 70 0.4 2555 110 0.4 3679 158 0.4 5748 247 0.4 10219 439 0.4 15967 687 0.4 63968 2746
0.5 2044 88 0.5 3193 137 0.5 4598 198 0.5 7185 309 0.5 12774 549 0.5 19959 858 0.5 79835 3433
0.6 2453 105 0.6 3832 165 0.6 5518 237 0.6 8622 371 0.6 15328 659 0.6 23950 1030 0.6 95802 4120
0.7 2861 123 0.7 4471 192 0.7 6438 277 0.7 10059 433 0.7 17883 769 0.7 27942 1207 0.7 111768 4806

Пример

Задача : подобрать диаметр трубы для отопления гостиной площадью 18 м², высота потолка 2,7 м.

Данные проекта:

  • циркуляция — принудительная (насос).

Среднестатистические данные:

  • расход мощности – 1 кВт на 30 м³
  • запас тепловой мощности – 20%

Расчёт :

  • объём помещения: 18 * 2,7 = 48,6 м³
  • расход мощности: 48,6 / 30 = 1,62 кВт
  • запас на случай морозов: 1,62 * 20% = 0,324 кВт
  • итоговая мощность: 1,62 + 0,324 = 1,944 кВт

Находим в таблице наиболее близкое значения Q:

Получаем интервал внутреннего диаметра: 8-10 мм.
Участок: 3-4.
Длина участка: 2.8 метров.

Шаг 2: вычисление местных сопротивлений

Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.

Факторы возникновения сопротивления:

Трубы для отопления

  • в самой трубе:
    • шероховатость;
    • место сужения/расширения диаметра;
    • поворот;
    • протяжённость.
  • в соединениях:
    • тройник;
    • шаровой кран;
    • приборы балансировки.

Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.

Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:

  1. длина трубы на расчётном участке/l,м;
  2. диаметр трубы расчётного участка/d,мм;
  3. принятая скорость теплоносителя/u, м/с;
  4. данные регулирующей арматуры от производителя;
  5. справочные данные:
    • коэффициент трения/λ;
    • потери на трение/∆Рl, Па;
    • расчетная плотность жидкости/ρ = 971,8 кг/м3;
  6. технические характеристики изделия:
    • эквивалентная шероховатость трубы/kэ мм;
    • толщина стенки трубы/dн×δ, мм.

Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.

Чтобы самостоятельно определить удельные потери на трение/R, Па/м, достаточно знать наружный d трубы, толщину стенки/dн×δ, мм и скорость подачи воды/W, м/с (или расход воды/G, кг/ч).

Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:

Для стальных и полимерных труб (из , полиэтилена, стекловолокна и т.д.) коэффициент трения/ λ наиболее точно вычисляется по формуле Альтшуля:

Re — число Рейнольдса, находится по упрощённой формуле (Re=v*d/ν) или с помощью онлайн-калькулятора:

Шаг 3: гидравлическая увязка

Для балансировки перепадов давления понадобится запорная и регулирующая арматура.

Исходные данные:

  • проектная нагрузка (массовый расход теплоносителя — воды или );
  • данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
  • технические характеристики арматуры.
  • количество местных сопротивлений на участке.

Задача : выровнять гидравлические потери в сети.

В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.

Фрагмент заводских характеристик поворотного затвора

Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².

Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:

В физическом смысле S — это потери давления на 1 кг/ч теплоносителя:

где:

  • ξпр — приведенный коэффициент для местных сопротивлений участка;
  • А — динамическое удельное давление, Па/(кг/ч)².

Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).

Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.

Приведенный коэффициент:

Он суммирует все местные сопротивления:

С величиной:

которая соответствует коэффициенту местного сопротивления с учётом потерь от гидравлического трения.

Шаг 4: определение потерь

Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:

  • первичного контура/ΔPIк;
  • местных систем/ΔPм;
  • теплогенератора/ΔPтг;
  • теплообменника/ΔPто.

Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.

Особенности программ:

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

Ячейка Значение, обозначение, единица выражения
D4 45,000 Расход воды G в т/час
D5 95,0 Температура на входе tвх в °C
D6 70,0 Температура на выходе tвых в °C
D7 100,0 Внутренний диаметр d, мм
D8 100,000 Длина, L в м
D9 1,000 Эквивалентная шероховатость труб ∆ в мм
D10 1,89 Сумма коэф. местных сопротивлений - Σ(ξ)

Пояснения:
  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

Ячейка Алгоритм Формула Значение результата
D12 !ERROR! D5 does not contain a number or expression tср=(tвх+tвых)/2 82,5 Средняя температура воды tср в °C
D13 n=0,0178/(1+0,0337*tср+0,000221*tср2) 0,003368 Кинематический коэф. вязкости воды - n, cм2/с при tср
D14 !ERROR! D12 does not contain a number or expression ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 0,970 Средняя плотность воды ρ,т/м3 при tср
D15 G’=G*1000/(ρ*60) 773,024 Расход воды G’, л/мин
D16 !ERROR! D4 does not contain a number or expression v=4*G:(ρ*π*(d:1000)2*3600) 1,640 Скорость воды v, м/с
D17 !ERROR! D16 does not contain a number or expression Re=v*d*10/n 487001,4 Число Рейнольдса Re
D18 !ERROR! Cell D17 does not exist λ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re+∆/d)0,25 при Re≥4000
0,035 Коэффициент гидравлического трения λ
D19 !ERROR! Cell D18 does not exist R=λ*v2*ρ*100/(2*9,81*d) 0,004645 Удельные потери давления на трение R, кг/(см2*м)
D20 !ERROR! Cell D19 does not exist dPтр=R*L 0,464485 Потери давления на трение dPтр, кг/см2
D21 dPтр=dPтр*9,81*10000 45565,9 и Па соответственно
D20
D22 !ERROR! D10 does not contain a number or expression dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) 0,025150 Потери давления в местных сопротивлениях dPмс в кг/см2
D23 !ERROR! Cell D22 does not exist dPтр=dPмс*9,81*10000 2467,2 и Па соответственно D22
D24 !ERROR! Cell D20 does not exist dP=dPтр+dPмс 0,489634 Расчетные потери давления dP, кг/см2
D25 !ERROR! Cell D24 does not exist dP=dP*9,81*10000 48033,1 и Па соответственно D24
D26 !ERROR! Cell D25 does not exist S=dP/G2 23,720 Характеристика сопротивления S, Па/(т/ч)2

Пояснения:
  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.



Читайте также: