Детекторы сигналов с частотной модуляцией (ЧМ). Простые индикаторы СВЧ поля своими руками Стрелочный вч детектор

Схема индикатора поля (ИП) (рис.1) представляет собой усилитель постоянного тока на ОУ с каскадом УВЧ и ВЧ детектором.

На входе УВЧ установлен фильтр ВЧ L1,C2,L2,C3, который обрезает сигналы с частотой ниже 10 – 20 МГц, в противном случае, прибор начинает реагировать на фон электропроводки, и др. индустриальные помехи.

Усилитель ВЧ выполнен по схеме с общим эмиттером, режим выставляется резистором R1 так, что бы на коллекторе VТ1 было напряжение равное Uкол=Uпит/2.

Через конденсатор С4 сигнал поступает на диодный детектор VD1, здесь необходимо применять СВЧ германиевый диод ГД402,ГД507, нельзя применять диод Д9, максимальная частота которого 40 МГц.

Выпрямленный сигнал поступает на вход ОУ через фильтр L3,L4,С6,С7, которые препятствуют попадания на вход ОУ ВЧ составляющей. Операционный усилитель работает от однополярного питания, поэтому для его нормальной работы, при помощи делителя на R4; R5 создана искусственная “средняя точка”.

Усиление микросхемы определяется отношением R6/R8 при малых сигналах на входе. При увеличении напряжения на выводе 6 микросхемы до 0,6 - 0,7 вольт происходит открывание диода VD2 и в цепь обратной связи усилителя подключается резистор R7, что уменьшает усиление и делает шкалу прибора линейной.

В качестве ОУ можно применить 140УД12 или 140УД6 (предпочтительнее). В случае использования УД6 резистор R9 из схемы необходимо удалить. Резистором R10 осуществляется установка шкалы прибора на 0.

VT1 - СВЧ транзистор, например КТ399.

L1 -8 витков, провода 0,5 на оправке 5мм. L2-6 витков, того же провода.

Дросселя L3, L4 по 60 - 100 мкГн.

Следующая схема (рис.2) представляет собой доработанную конструкцию, применение дополнительного ОУ позволило исключить резисторный делитель напряжения и улучшить характеристики прибора.




Для тех, кто предпочитает звуко-световую индикацию, предлагается другой вариант (рис.3), отличающейся наличием управляемого напряжением мультивибратора.




Схема очень простая и не должна вызвать трудностей в изготовлении и настройки.

В качестве звукового излучателя применен пьезо-излучатель.

Частота сигнала определяется номиналами конденсаторов мультивибратора в пределах 10–33Нф



Данная конструкция (рис.4) способна засечь:
Радио микрофон V пит=3 В. F=93 МГц - 4 метра
Радио микрофон, одно транзисторный, Vпит=3 В. F=420 МГц - 3 метра
Радио микрофон Vпит=3 В. F=860 МГц - 80 см.
Китайская телекамера Vпит=9В. F=1200 МГц. - 4 метра
Мобильный телефон, во время передачи - 6 – 7 метров.

Рисунки печатных плат в программе Layout:

Источник: Habrhabr

Защита переговоров. Антижучки и индикаторы поля

Примеры найденных жучков (источник фото: Интернет)

Дело было еще во Владивостоке.

Знакомые, владельцы турфирмы, рассказали, что однажды уборщица их спросила: «А почему вечером, когда все уходят, у вас сверху, на шкафу что-то мигает?». Полезли на шкаф, а там - чуть ли не автомобильный аккумулятор и рация, прикрученная синей изолентой. Вот такой суровой бывала дальневосточная прослушка.

Батарейка сотового телефона (фейк, но все равно интересно)

Неожиданная находка в мобильном телефоне, которая может ожидать каждого из нас.

В общем, - самсунг с4. Умер акк, купил новый. НО, старый акк вздулся и на нем очень красиво проступил силуэт контурной антенны - как на бирочках товаров - в магазинах, чтоб не вынесли, решил узнать что это за штуковина, благо выкинуть все равно хотел.

В качестве базы для всех радиозакладок используется портативный радар CTX4000.

Радар работает в диапазоне 1-2ГГц. Мощность внутреннего усилителя - 2 Вт, внешнего - до 1 кВт (для сравнения мощность стандартной Wi-Fi карты - 0,2 Вт). В 2008 году CTX4000 должен был быть заменен на более продвинутую версию PHOTOANGLO с расширенным до 4 ГГц диапазоном и размером с «небольшой портфель».

При включении радар создает вокруг себя (или впереди себя, зависит от типа антенны излучателя) электромагнитное поле высокой мощности на выбранной частоте. Информативный сигнал с радиозакладки модулирует это поле, а принимающая антенна радиокомплекса считывает промодулированный сигнал и с помощью фильтра выделяет из него информативный сигнал (ВЧ навязывание). Радар в этой схеме как бы организует канал связи между закладкой и принимающей антенной. Подобным образом, к примеру, работают пассивные лавинные датчики Recco, или RFID карточки.

Использование мощного внешнего несущего сигнала имеет ряд преимуществ:

размеры антенны и мощность излучателя закладки могут быть сведены к минимуму;

пассивная закладка будет потреблять значительно меньше энергии (следовательно размер батарейного блока можно так же уменьшить);

пассивная закладка включается только при облучении её сигналом определенной частоты, следовательно выявить её намного сложнее, чем обычную радиозакладку.

Жучок LOUDAUTO

Размер: примерно 1,5 сантиметра в длину без элементов питания

Чувствительный микрофон позволяет подслушивать «офисный» разговор с расстояния более 6 метров. Жучок работает от 3 вольтовой батарейки и потребляет настолько мало, что токи саморазрядки батареи могут быть больше токов потребления жучка. Собран из широкодоступных компонентов, поэтому связать его с АНБ не получится (отсюда и «кустарный» вид).

Радиометка TAWDRYYARD

Размер: 6мм

Радиометка, которая частенько используется для определения местоположения VGA кабеля с закладкой RAGEMASTER, либо любой другой цели. Легко определяется радаром с расстояния в 15 метров. Способна работать от одной стандартной часовой батарейки месяцами или годами. Сделана из общедоступных радиодеталей. Планируется встроить в нее GPS, аппаратный идентификатор и радиосканер-детектор других закладок TAWDRYYARD.

Передатчик SURLYSPAWN

Размер: 9мм

При облучении радаром передает в радиоэфир в реальном режиме времени нажатия клавиш на клавиатуре ПК или ноутбука.

Закладка для VGA кабелей RAGEMASTER

Размер: 6мм

Закладка устанавливается в разрыв красной жилы VGA кабеля.

При облучении радаром, закладка начинает излучать в эфир сигнал, содержащий текущее изображение на мониторе (только красный канал для упрощения всей схемы).

С помощью устройства NIGHTWATCH злоумышленник получает точную копию изображения у себя на мониторе.

Жучок Навального

Очень убогое оборудование, - начинают эксперты в области устройств негласного получения информации. - Когда-то такие в России выпускали серийно и их массово использовали сотрудники правоохранительных органов. Но было это много-много лет назад. Так что это мастодонт какой-то. Микрофон очень большой, провода толстые торчат во все стороны… Вот даже стыдно такое профессионалу показывать, а использовать просто не прилично. Сейчас слушают совершено другими способами.

Жучок Венедиктова

Жучок в прокуратуре

Один из «жучков» был найден в телефонном аппарате, второй был прикреплен к проводу телевизора и включался, когда вилку втыкали в розетку. По словам Анатолия Бояркина, его кабинет примерно два раза в год проверяется сотрудниками управления ФСБ по Воронежской области на предмет прослушивающих устройств. Последняя такая проводилась примерно полгода назад, и спецслужбы ничего не нашли, и Бояркина уверили, что его кабинет вне контроля. «Но я подозревал, что мой кабинет прослушивается, - сказал прокурор, - поэтому и решил обратиться к независимым специалистам».

Под шевронами

«О жучках… Точно такие были обнаружены в конце июля под шевронами славянцев из батальона «Дружка» после обстрела его базы на Петровке. К сожалению, не помню всех подробностей. Украинский штурмовик отработал четко по шахтоуправлению, под шевронами раненого бойца случайно обнаружили жучка во время перевязки. Дружок доложил мне, оперативники обнаружили еще 5 или 6 жучков исключительно в форме, выданной в Славянске еще в конце апреля»

Будущее уже здесь

Когда не надо никаких спецустройств, а звук можно восстановить по картинке.

Выступление на TED

Как ищут прослушку

Есть активные и пассивные методы.

К активным относится нелинейный локатор, это что-то типа микроволновки, насаженной на миноискатель. Когда препод в универе ее включал, он предупреждал, что могут задымится сотовые телефоны, а у меня начинала кружиться голова немного.

К пассивным относятся детекторы или индикаторы поля. Они реагируют на беспроводную передачу. Сейчас на рынке есть три категории устройств - «игрушки» (до 10.000 руб), «для бизнеса» (10-50 тыс руб.) и профессиональные (от 100 тыс руб.)

Есть жучки, которые, как чукча, что слышат, то и передают. В таком случае их можно обнаружить режимом «поиск» (это как в кино/мультике «Охотники за привидениями» искали аномалии). Но есть и «умные» жучки, которые накапливают информацию, и в определенное время ее отсылают. В таком случае поможет только режим «мониторинг» с записью событий и последующий анализ.

немного теории про индикаторы поля

Сначала пару слов про имитаторы жучков, потом про индикаторы поля

TEST Контрольное устройство

Его использование позволяет оценить работоспособность следующих режимов:

  • высокочастотного детектора-частотомера;
  • анализатора проводных линий (АПЛ);
  • детектора низкочастотных магнитных полей;
  • детектора инфракрасных излучений.

ТЕСТ представляет собой комплект имитаторов, собранных в одном корпусе с автономным питанием.

Имитатор для оценки работоспособности высокочастотного детектора-частотомера представляет собой минирадиопередатчик с кварцевой стабилизацией частоты и возможностью отключения модулирующего сигнала, для анализатора проводных линий - генератор сигнала с заданной частотой, для детектора низкочастотных магнитных полей - источник стабильного магнитного поля и для детектора инфракрасных излучений - передатчик ИК-диапазона с заданной частотой поднесущей.

ТЕСТ позволяет оценить чувствительность тестируемого тракта, точность сопутствующих измерений (частотомера, синтезатора АПЛ), работоспособность детекторов, осциллографа, спектроанализатора и отображения результатов измерений.

Технические характеристики:

  • Частота минирадиопередатчика, МГц - 270±0.01
  • Частота имитатора АПЛ, МГц - 8.445
  • Длина волны ИК передатчика, нМ, - в пределах 770-1100
  • Поднесущая частота ИК передатчика, кГц - 100
  • Частота модулирующего сигнала, кГц - 1
  • Вид модулирующего сигнала - АИМ
  • Напряжение питания, В - 3 (2 батареи типа АА)
  • Потребляемый ток, мА, - не более 45
  • Габариты, мм - 88X56X18

Эта штуковина предназначена для тестирования дорогущих профессиональных индикаторов поля, типа Пираньи

TTM-700

Про эту штуковину ничего не нашел в сети, но суровая надпись на корпусе вызывает уважение.

Антижучки

Я провел поверхностное тестирование индикаторов поля и поделюсь результатами и впечатлениями.

BugHunter

Фишки - цена (около 10 тыс руб)

Примитивный интерфейс (где толком можно только выбирать чувствительность прибора), работа только в реальном времени (что не позволяет обнаружить отложенные передачи). В моих корявых руках он либо все время верещал, либо обнаружал жучок на расстоянии 5-10 см. Подходит для учебных целей, например, для детского лагеря. Но если уж он попался в руку, то можно пройтись по стенам, дверным косякам и плинтусам на всякий случай.

Raksa 120

Фишки - портативность. Размером со спичечный коробок и удобное крепление. Прибор замаскирован под брелок автомобиля.

Позволяет обнаруживать:

  • сотовые телефоны стандартов GSM900/1800, UMTS(3G), CDMA450
  • беспроводные телефоны стандарта DECT
  • устройства Bluetooth и Wi-Fi
  • беспроводные видеокамеры
  • радиопередатчики с аналоговой модуляцией (АМ, ЧМ, ФМ)
  • радиопередатчики с цифровой модуляцией и непрерывной несущей (FSK, PSK и др.)
  • радиопередатчики с широкополосной модуляцией с полосой до 10 МГц

Особенности:

  • селективный прием радиосигналов
  • высокая скорость сканирования и анализа
  • обнаружение широкополосных и цифровых сигналов
  • адаптация к фону в режиме охраны
  • возможность поиска с вычитанием спектра
  • аудиоконтроль сигналов
  • измерение частоты и уровня сигнала
  • журнал событий тревоги
  • бесшумная индикация тревоги (вибросигнал)
  • отсутствие внешней антенны

Режим охраны

Режим охраны предназначен для постоянного слежения за обнаруженными аналоговыми и цифровыми радиосигналами в автоматическом режиме (без участия оператора) и тревожной сигнализации в случае появления опасного радиосигнала, т.е. радиосигнала с уровнем, превышающим установленный порог. Режим охраны используется в тех случаях, когда первоначально источник опасного радиосигнала отсутствует или не активен. Информация о событиях тревоги сохраняется в журнале.

В режиме охраны для аналоговых сигналов осуществляется вычитание фонового спектра. Это уменьшает влияние стационарных (постоянно присутствующих) мешающих сигналов и помех. Алгоритм адаптации фонового спектра отслеживает медленные изменения уровней этих мешающих сигналов.

Режим обзора

Режим обзора предназначен для обнаружения аналоговых и цифровых радиосигналов всех типов. В этом режиме на дисплее отображается список всех текущих обнаруженных сигналов, отсортированный по частоте или типу сигнала.

Режим поиска

Режим поиска предназначен для обнаружения и определения местоположения аналоговых и цифровых радиопередатчиков. На дисплее отображается сигнал, имеющий максимальный уровень. Этот режим используется в тех случаях, когда есть возможность перемещения индикатора поля для поиска радиопередатчика.

В режиме поиска для аналогового сигнала реализована световая и звуковая индикация относительного уровня сигнала – по частоте повторения вспышек светодиода можно судить о приближении или удалении от радиопередатчика.

Режим поиска с вычитанием спектра

Режим поиска с вычитанием спектра предназначен для обнаружения и определения местоположения аналоговых радиопередатчиков. Использование этого режима имеет преимущества по сравнению с обычным режимом поиска в случае, если радиопередатчик находится в том же помещении.

В режиме поиска с вычитанием спектра определяется не абсолютный уровень аналоговых сигналов, а относительный – его разница с базовым спектром, который был измерен в начале работы в этом режиме. Известно, что при приближении или удалении от радиопередатчика, который находится внутри помещения, уровень сигнала изменяется сильнее, по сравнению с радиопередатчиком, расположенным вне помещения. Т.к. в режиме поиска с вычитанием спектра индикатор поля селективно реагирует на изменения уровня, то локальные радиопередатчики будут обнаружены с большей вероятностью.

В режиме поиска с вычитанием спектра реализована световая и звуковая индикация относительного уровня сигнала.

Мониторинг цифровых сигналов

Режим мониторинга цифровых сигналов предназначен для обнаружения сигналов сотовых телефонов стандартов GSM900/1800, UMTS(3G), CDMA450, беспроводных телефонов стандарта DECT, устройств Bluetooth, Wi-Fi и прочих импульсных сигналов в диапазоне 2,4 ГГц. В режиме мониторинга цифровых сигналов на дисплее отображается список всех цифровых сигналов и их обнаруженные уровни

Журнал событий тревоги

В журнале событий тревоги сохраняется информация об опасных радиосигналах, которые были обнаружены в режиме охраны. Максимальное число записей – 200. Если одновременно обнаружены опасные сигналы разных типов, то в журнале сохраняется информация о каждом из них. При просмотре записи на дисплее отображается время появления и исчезновения сигнала, его тип и максимальный уровень.

Технические характеристики:

  • диапазон принимаемых: частот 50-3200 МГц
  • типовая чувствительность: 70 мВ/м
  • динамический диапазон: 50 дБ
  • ширина полосы пропускания: 10 МГц
  • время полного цикла сканирования: 1,5 с
  • время работы в режиме охраны: 4-12 ч.
  • время работы в остальных режимах: 3 ч.
  • дисплей: OLED, 128 х 64
  • размеры: 77 х 43 х 18 мм
  • вес: 35 г

Имитатор жучков TTM-700 обычным поиском можно обнаружить на расстоянии 30-40 см, в режиме «поиска с вычитанием» на расстоянии 60-70 см.

Имитатор TEST я обнаружил с расстояния 20-25 см в режиме поиска, в режиме «поиск с вычитанием» - 35-40 см

ST 110

Фишки - крутейшая система настроек, работа без ложных срабатываний. Режим осциллографа. Совместимость с ПК.

Вообще, прибор выглядит и сделан как серьезное армейское устройство.

Два режима работы:

  • поиск радиомикрофонов (жучков) в помещениях
  • мониторинг радиомикрофонов на посетителях, которые приходят к вам в кабинет, либо на переговоры вне офиса.

Дополнительными режимами являются режимы «ПРОСМОТР ПРОТОКОЛА» и «ОСЦИЛЛОГРАФ».

Дополнительная ВЧ антенна расширяет диапазон частот до 7000 МГц.

Что находит?

  • радиомикрофоны;
  • телефонные радиоретрансляторы;
  • радиостетоскопы;
  • скрытые видеокамеры с передачей информации по радиоканалу;
  • технические средства систем пространственного высокочастотного облучения;
  • радиомаяки систем слежения за перемещением объектов;
  • сотовые телефоны, радиостанции и радиотелефоны.

Режим ПОИСК:

Данный режим предназначен для оперативного поиска и определения местоположения РТС. Использование данного режима основано на визуальной оценке уровня сигналов на 32 сегментной шкале, для каждого частотного диапазона. Дополнительно используется раздельная индикация непрерывного и импульсного видов сигналов, отображение идентифицированных сигналов - GSM, DECT, BLUETOOTH и 802.11g, а так же индикация частоты стабильного сигнала.

Есть «умные жучки», против него есть режим -

Режим МОНИТОРИНГ:

Предназначен для обнаружения РТС, по заданному порогу, частоте или виду сигнала. При автономной работе сохранение информации осуществляестя в энергонезависимой памяти изделия (9 банков по 999 событий).

Обеспечена работа по расписанию.

Режим ПРОСМОТР ПРОТОКОЛА:

Предназначен для просмотра протокола событий произошедших в результате работы изделия в режиме МОНИТОРИНГ.

Обеспечена возможность сортировки событий по следующим признакам: времени наступления события, длительности события, уровню сигнала и частотному диапазону.

Режим ОСЦИЛЛОГРАФ

  • Вариант установки (А - автоматическое Р - ручное) и относительное значение вертикальной развертки (от 1 до 7)
  • Осциллограмма
  • Значение горизонтальной развертки в пересчете на весь экран (от 1, 2,4,8, 16 и 32мс)

Работа с ПК:

  • отображение в графическом виде результата работы ST 110 в режиме реального времени;
  • загрузка и отображение, как в графическом, так и в текстовом формате результата работы ST 110 в режиме «Мониторинг» (протокол событий);
  • полное управления ST 110 с ПК.

Имитатор жучков TTM-700 я засек на расстоянии 150 - 170 см, TEST на расстоянии 45-50 см.

Вывод

  • Багхантер возможно что-то и найдет, но только в чистом эфире мощный передатчик (как в чистом поле высокое дерево), но в современных индустриальных условиях он достаточно бесполезен
  • Ракса хороша с собой в кармане, при проведении переговоров
  • ST-110 хорош для поиска в сложной электромагнитной обстановке и для поиска сложных для обнаружения передатчиков

Детектирование ЧМ-сигналов может производиться с помощью описанных выше схем АМ-детекторов после преобразования изменения частоты в изменение амплитуды.

Для этого преобразования могут использоваться любые цепи с линейно изменяющейся АЧХ, например, \(LC\)-контур, расстроенный относительно частоты ЧМ сигнала так, что середина левого или правого ската его АЧХ совпадает с несущей частотой сигнала. Упрощенная схема и диаграммы работы ЧМ-детектора с такой цепью приведены на рис. 3.6-8.

Рис. 3.6-8. Упрощенная схема ЧМ-детектора с одиночным контуром (а) и диаграммы его работы (б)

Для улучшения характеристик детектора вместо одиночного контура может использоваться сбалансированная пара \(LC\)-контуров (рис. 3.6-9). Детектор содержит два резонансных контура, два диода и два фильтра НЧ, выполненных на \(RC\)-цепочках. Резонансные контуры несколько расстроены относительно несущей частоты ЧМ сигнала.

Рис. 3.6-9. Упрощенная схема ЧМ-детектора с двумя контурами (а) и диаграммы, поясняющие его работу (б)

Описанные простейшие решения ЧМ-детекторов имеют достаточно ограниченное применение. Шире известны т.н. детектор-дискриминатор и дробный детектор (детектор отношений ), в них схемы включения входных контуров и детектирующих диодов несколько сложнее, но обеспечивают лучшие характеристики.

Пример схемы частотного детектора-дискриминатора (также его иногда называют дифференциальным детектором ) приведен на рис. 3.6-10.

Рис. 3.6-10. Схемы детектора-дискриминатора (а) и векторные диаграммы, поясняющие принцип его работы (б)

В этой схеме имеется два резонансных индуктивно связанных контура \(L1C1\) и \(L2C2\), которые настраиваются точно на частоту сигнала ПЧ. Напряжения, снимаемые с противоположных ветвей контура \(L2C2\), выпрямляются на диодах \(VD1\), \(VD2\) и затем подаются на нагрузку в виде сопротивлений \(R1\), \(R2\) (конденсаторы \(C6\), \(C7\) шунтируют нагрузку по радиочастоте, предотвращая проникновение в последующие каскады радиочастотной составляющей). При совпадении частоты входного сигнала \(U_{вх}\) с резонансной частотой контура \(L2C2\) сигнал \(U_2\), снимаемый с этого контура, на 90° опережает входной сигнал (заметим, что напряжение подводимое в среднюю точку \(L2\) равно \(U_{вх}\)). Поскольку выпрямленные напряжения \(U_{R1}\), \(U_{R2}\), действующие на резисторах \(R1\), \(R2\), пропорциональны напряжениям \(U_3\), \(U_4\) (рис. 3.6‑10б), то результирующее напряжение на выходе детектора, равное разности \(U_{R1}\) – \(U_{R2}\), при резонансной частоте будет равно нулю (\(U_{вых} = U_{R1} – U_{R2} = 0\)). При изменении частоты сигнала будет наблюдаться фазовый сдвиг между входным сигналом и сигналом, выделяемым на контуре \(L2C2\), отличный от 90°. Из-за этого выпрямленные напряжения \(U_{R1}\) и \(U_{R2}\) окажутся различными и на выходе детектора появится сигнал соответствующего знака и амплитуды.

Основными свойствами детектора-дискриминатора являются:

  • высокая линейность передаточной характеристики, однако чувствительность к амплитудным помехам очень высока, поэтому необходимо применение ограничителя амплитуды на входе детектора;
  • оба контура детектора настраиваются на частоту несущей входного сигнала;
  • при равенстве частоты входного сигнала частоте настройки резонансных контуров напряжение на выходе детектора равно нулю.

Степень нелинейных искажений и крутизна характеристики детектора определяется фактором связи между контурами. В пределах заданной максимальной девиации частоты ЧМ сигнала характеристика детектора должна быть линейной. Расширить полосу пропускания (крутизна при этом будет снижаться) можно, зашунтировав один или оба контура резисторами с небольшими сопротивлениями, т.е. снизив добротности контуров.

На низких частотах (465 кГц и ниже) может применяться простой детектор-дискриминатор, схема которого приведена на рис. 3.6-11.

Рис. 3.6-11. Простой детектор-дискриминатор для низких частот (465 кГц и менее)

Работа этого детектора происходит следующим образом. Сигнал ПЧ ограничивается диодами \(VD1\), \(VD2\) и подается на последовательный колебательный контур \(L1C3\), настроенный точно на промежуточную частоту. Напряжения, снятые с конденсатора и катушки контура, выпрямляются диодами \(VD3\), \(VD4\) и в противофазе складываются на выходе. При резонансе эти напряжения равны, и выходное напряжение детектора равно нулю. При изменении частоты сигнала соотношение напряжений изменяется. Это приводит к появлению выходного напряжения соответствующего знака.

В высококачественных связных приемниках с высоким значением промежуточной частоты (более 5...9 МГц) часто применяются кварцевые-дискриминаторы. В них вместо традиционных \(LC\)-контуров используются кварцевые резонаторы на соответствующие частоты. Это позволяет добиться высокой стабильности и симметричности амплитудно-частотной характеристики детектора. Примеры таких детекторов приведены на рис. 3.6-12 и 3.6-13.

Рис. 3.6-12. ЧМ детектор с кварцевым дискриминатором

Рис. 3.6-13. ЧМ-детектор с дискриминатором на двух кварцах

В схеме детектора на рис. 3.6‑12 используется один кварцевый резонатор \(BQ1\), через который сигнал ПЧ подается на один из диодов детектора. На другой диод сигнал ПЧ поступает через конденсатор \(C1\) с емкостью, равной параллельной емкости кварца. Продетектированные напряжения складываются в противоположной полярности на выходе дискриминатора. На частотах, близких к частоте последовательного резонанса, сопротивление кварца мало, и высокочастотное напряжение на диоде \(VD2\) больше, чем на \(VD3\). На выходе при этом появляется продетектированное напряжение положительной полярности. На частотах, близких к частоте параллельного резонанса, сопротивление кварца велико и выходное напряжение отрицательно. Ширина дискриминационной характеристики детектора примерно соответствует расстоянию между частотами последовательного и параллельного резонансов кварца. Ее можно увеличить почти вдвое, если вместо конденсатора \(C1\) включить другой кварц с частотой последовательного резонанса, равной частоте параллельного резонанса кварца \(BQ1\). Похожее решение реализовано в схеме на рис. 3.6-13.

Пример схемы дробного детектора с симметричным заземлением нагрузки (резисторы \(R5\) и \(R6\)) относительно диодов \(VD1\), \(VD2\) приведен на рис. 3.6-14. Такой детектор также часто называют симметричным детектором отношений .

Рис. 3.6-14. Схема дробного ЧМ-детектора (детектор отношений)

Эквивалентные добротности контуров \(Q_э\) выбираются в пределах 50...75 (на частотах более 6 МГц). При этом для хорошего подавления амплитудной модуляции и достижения малых нелинейных искажений необходимо, чтобы конструктивная добротность \(Q_к\) была в два-три раза больше \(Q_э\). Индуктивность обмотки \(L2\) выбирают в пределах \({0,25...0,5} \cdot L1\), а добротность - 40...60. Коэффициенты связи между обмотками: \(k_{св 12} \approx 40/Q_э\), \(k_{св 13} \approx 0,5/Q_э\).

На рис. 3.6-15...3.6-18 приводится несколько конкретных реализаций диодных ЧМ детекторов (детекторов отношений), применяемых в бытовых и связных приемниках.

Рис. 3.6-15. Детектор отношений для узкополосной ЧМ

Рис. 3.6-16. Простой детектор отношений для бытового приемника

Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

Широкополосные усилители являются неотъемлемой частью многихрадиотехнических систем и устройств. В ряде случаев помимо прочих к ним предъявляются требования согласования со стандартным 50- либо 75-омным трактом. Одним из наиболее удачных схемных решений построения таких

усилителей является использование перекрестных обратных связей (Л1, Л2, Л3), обеспечивающих согласование по входу и выходу, неизменное значение верхней граничной частоты при увеличении числа каскадов усилителей и высокую повторяемость их характеристик. Кроме того, усилители с перекрестными обратными связями практически не требуют настройки.

Технические характеристики усилителя:

  1. Полоса рабочих частот.. 0,5-70 МГц.
  2. Выходное напряжение, не менее... 1 V.
  3. Коэффициент усиления.....20±1 Дб.
  4. Входное/выходное сопротивление.. 50 Ом.
  5. Потребляемый ток........ 120мА.
  6. Напряжение питания..........12В.
  7. КСВН по входу, не более.........1,5.
  8. КСВН по выходу, не более.........3.
  9. Габаритные размеры..... 70x45 мм.

Принципиальная схема

На рис. 1 приведена принципиальная схема усилителя с перекрестными обратными связями, в котором выходной каскад реализован по схеме Дарлингтона, то есть, использовано последовательно-параллельное включение транзисторов, что позволяет увеличить уровень выходного напряжения (Л.4). На рис.

2 приведен чертеж печатной платы.

Усилитель содержит два предварительных каскада на транзисторах МЕ1 и МЕ2 и выходной каскад на транзисторах МЕЗ и МЕ4, включенных по схеме Дарлингтона.

Все каскады усилителя работают в режиме класса А с токами потребления 27 мА, которые устанавливаются подбором номиналов резисторов R1, R5, R9, R13. Резисторы R3, R7, R10, R14 являются резисторами местной обратной связи. Резисторы R4, R8, R12 - резисторы общей обратной связи.

Рис. 1. Принципиальная схема широкополосного усилителя ВЧ.

Печатная плата (рис. 2) размером 70x45 мм изготавливается из фольгированного с двух сторон стеклотекстолита толщиной 2...3 мм. Пунктирными линиями на рис.

2 обозначены места металлизации торцов, что может быть сделано с помощью металлической фольги, которая припаивается к нижней и верхней части платы.

Рис.2. Печатная плата усилителя ВЧ.

Настройка усилителя состоит из следующих этапов. Вначале с помощью резисторов R1, R5, R9, R13 устанавливаются токи покоя транзисторов усилителя. Затем, варьируя в небольших пределах номиналом резистора R4, минимизируется коэффициент стоячей волны напряжения по входу усилителя.

Коэффициент стоячей волны напряжения по выходу усилителя минимизируется с помощью резистора R12. Изменением номинала резистора R8 регулируется полоса пропускания и коэффициент усиления усилителя.

При необходимости верхняя граничная частота усилителя может быть увеличена. Для этого следует заменить транзисторы КТ315Г на более высокочастотные. В этом случае для схемы, приведенной на рис.

1, верхняя граничная частота будет составлять величину порядка 0,25...0,3 Fт, где Fт - граничная частота коэффициента передачи тока базы транзистора (Л.5). Использование рассматриваемого схемного решения позволяет осуществлять создание усилителей с верхней граничной частотой до 2 ГГц (Л.2). При их построении следует учитывать, что цепи общей обратной связи, состоящие из элементов С4, R4; С6, R8; С7, R12, должны быть по возможности короче.

Это объясняется необходимостью устранения излишней фазовой задержки сигнала в этих цепях. В противном случае амплитудно-частотная характеристика усилителя в области верхних частот оказывается с подъёмом. При значительном удлинении указанных цепей возможно самовозбуждение усилителя.

Титов А. Рк2005, 1.

Литература:

  1. Титов А. А. Упрощенный расчет широкополосного усилителя. Радиотехника, 1979, №6, с. 88-90.
  2. Авдоченко Б.И., Дьячко А.Н. и др. Сверхширокополосные усилители на биполярных транзисторах. Техника средств связи. Сер. Радиоизмерительная техника, 1985, Выл. 3, с. 57-60.
  3. Абрамов Ф.Г., Волков Ю.А. и др. Согласованный широкополосной усилитель. Приборы и техника эксперимента. 1984. №2, с. 111-112.
  4. Титов А.А., Ильющенко В.Н.Широкополосной усилитель. Патент по полезную модель №35491 Рос. агентства по патентам и товарным знакам. Опубл. 10.01.2004 Бюл. 1.
  5. Петухов В.М.Транзисторы и их зарубежные аналоги: Справочник в 4 томах.


Читайте также: